分析 分別取AC,BC的中點(diǎn)E,F(xiàn),根據(jù)$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$得$\overrightarrow{OA}$+$\overrightarrow{OC}$=-3($\overrightarrow{OB}+\overrightarrow{OC}$),即2$\overrightarrow{OD}$=-6$\overrightarrow{OE}$,所以O(shè)為DE靠近E點(diǎn)的四等分點(diǎn),利用三角形知識得出面積比.
解答 解:分別取AC,BC的中點(diǎn)E,F(xiàn),∵$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,∴$\overrightarrow{OA}$+$\overrightarrow{OC}$=-3($\overrightarrow{OB}+\overrightarrow{OC}$),∴2$\overrightarrow{OD}$=-6$\overrightarrow{OE}$,∴$\frac{OD}{DE}$=$\frac{3}{4}$.
∴$\frac{{S}_{△AOC}}{{S}_{△ACE}}$=$\frac{3}{4}$,又∵$\frac{{S}_{△ACE}}{{S}_{△ABC}}$=$\frac{1}{2}$,∴$\frac{{S}_{△AOC}}{{S}_{△ABC}}$=$\frac{3}{8}$.
故答案為$\frac{3}{8}$.
點(diǎn)評 考查向量在幾何中的應(yīng)用,以及向量加法的平行四邊形法則和向量共線定理等基礎(chǔ)知識,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | 2-i | C. | 1-i | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com