分析 根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行求解即可.
解答 解:設(shè)t=|x-a|,則當(dāng)x≥a時(shí),t=|x-a|=x-a為增函數(shù),而y=($\frac{1}{2}$)t為減函數(shù),
故此時(shí)函數(shù)y=($\frac{1}{2}$)|x-a|在[a,+∞)上為減函數(shù),
若函數(shù)y=($\frac{1}{2}$)|x-a|在區(qū)間(2,+∞)遞減,
則a≤2,
故答案為:(-∞,2]
點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,利用復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0)>g(0)>g(-2) | B. | f(0)>g(-2)>g(0) | C. | g(-2)>f(0)>g(0) | D. | g(-2)>g(0)>f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com