3.在△ABC中,已知$\overrightarrow{AB}$=(cos18°,cos72°),$\overrightarrow{BC}$=(2cos63°,2cos27°),則△ABC是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無(wú)法確定

分析 利用數(shù)量積和三角公式得出$\overrightarrow{AB}$$•\overrightarrow{BC}$=2cos18°cos63°+2sin18°sin63°=2cos(18°-63°)=2sin45=$\sqrt{2}$>0,判斷向量$\overrightarrow{AB}$,$\overrightarrow{BC}$的夾角,即可得出∠B為鈍角.

解答 解:∵$\overrightarrow{AB}$=(cos18°,cos72°),$\overrightarrow{BC}$=(2cos63°,2cos27°),
∴$\overrightarrow{AB}$=(cos18°,sin18°),$\overrightarrow{BC}$=(2cos63°,2sin63°),
∵$\overrightarrow{AB}$$•\overrightarrow{BC}$=2cos18°cos63°+2sin18°sin63°=2cos(18°-63°)=2sin45=$\sqrt{2}$>0,
∴向量$\overrightarrow{AB}$,$\overrightarrow{BC}$的夾角為銳角,
∴∠B為鈍角,
∴△ABC是鈍角三角形.

點(diǎn)評(píng) 本題考查了平面向量與三角形的關(guān)系,數(shù)量積的運(yùn)用判斷三角形的形狀,屬于中檔題,關(guān)鍵是判斷三角形的夾角與向量的夾角的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)萬(wàn)元,其中固定成本為2萬(wàn)元,并且每生產(chǎn)100臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)滿足R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x-0.8(0≤x≤5)}\\{10.2(x>5)}\end{array}\right.$,假定該產(chǎn)品產(chǎn)銷平衡,那么根據(jù)上述統(tǒng)計(jì)規(guī)律:
(1)要使工廠有盈利,產(chǎn)品數(shù)量x應(yīng)控制在什么范圍?
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí)盈利最大?此時(shí)每臺(tái)產(chǎn)品售價(jià)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視看書(shū)合計(jì)
105060
101020
合計(jì)206080
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時(shí)間段居民的休閑方式與性別有關(guān)系”?
(Ⅱ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書(shū)為休閑方式的人數(shù)為隨機(jī)變量X.求X的數(shù)學(xué)期望和方差.
P(X2≥k)0.0500.0100.001
k3.8416.63510.828
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+n+{1}^{n}+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)z1=3-4i,z2=-2+3i,則z1+z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.直線l1:ax-y+b=0,l2:bx+y-a=0(ab≠0)的圖象只可能是圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(Ⅰ) 化簡(jiǎn):$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-π-α)sin(-π-α)}$;
(Ⅱ)已知α為第二象限的角,化簡(jiǎn):$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)y=lnx-x的遞增區(qū)間是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點(diǎn),cos<$\overrightarrow{DP}$,$\overrightarrow{AE}$>=$\frac{\sqrt{3}}{3}$,若以如圖所示建立空間直角坐標(biāo)系,則E點(diǎn)坐標(biāo)為( 。
A.(1,1,2)B.(2,2,1)C.(1,1,1)D.$(1\;,\;1\;,\;\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知復(fù)數(shù)z=$\frac{1+2i}{{i}^{2}}$則它的模|z|=$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案