分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進行求最值即可.
解答 解:由z=x-2y得y=$\frac{1}{2}$x-$\frac{z}{2}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分)
平移直線y=$\frac{1}{2}$x-$\frac{z}{2}$,
由圖象可知當(dāng)直線,過點A時,直線的截距最小,此時z最大,
由 $\left\{\begin{array}{l}{x-y-4=0}\\{y=0}\end{array}\right.$,得 $\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即A(4,0),
代入目標(biāo)函數(shù)z=x-2y,得z=4,
∴目標(biāo)函數(shù)z=x-2y的最大值是4,
故答案為:4.
點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜歡看該節(jié)目 | 不喜歡看該節(jié)目 | 合計 | |
女生 | 5 | ||
男生 | 10 | ||
合計 | 50 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.0050. | 001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 12 | C. | 18 | D. | 36 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com