3.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y-4≤0}\\{x-3y≥0}\\{y≥0}\end{array}\right.$,則z=x-2y的最大值為4.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進行求最值即可.

解答 解:由z=x-2y得y=$\frac{1}{2}$x-$\frac{z}{2}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分)
平移直線y=$\frac{1}{2}$x-$\frac{z}{2}$,
由圖象可知當(dāng)直線,過點A時,直線的截距最小,此時z最大,
由 $\left\{\begin{array}{l}{x-y-4=0}\\{y=0}\end{array}\right.$,得 $\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即A(4,0),
代入目標(biāo)函數(shù)z=x-2y,得z=4,
∴目標(biāo)函數(shù)z=x-2y的最大值是4,
故答案為:4.

點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實數(shù)a,b滿足4a+b=ab,(a≥b>0),則a+b的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示是某市2016年2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某同志隨機選擇2月1日至2月12日中的某一天到達該市,并停留3天.該同志到達當(dāng)日空氣質(zhì)量優(yōu)良的概率$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中正確命題的個數(shù)是( 。
(1)設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p;
(2)在區(qū)間[0,π]上隨機取一個數(shù),則事件“tanxcosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$;
(3)兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)r越接近1;
(4)f(x)=|sinx|+|cosx|,則f(x)的最小正周期是π.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)y=asinx+bcosx+c的圖象上有一個最低點(${\frac{11π}{6}$,1),如果圖象上每點縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的$\frac{3}{π}$倍,然后向左平移1個單位長度可以得到y(tǒng)=f(x)的圖象,則f(x)=(c-1)sin$\frac{π}{3}$x+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了了解大學(xué)生觀看某電視節(jié)目是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看該節(jié)目的有6人.
  喜歡看該節(jié)目 不喜歡看該節(jié)目 合計
 女生  5 
 男生 10  
 合計   50
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜歡看該節(jié)目與性別有關(guān)?說明你的理由;
(3)已知喜歡看該節(jié)目的10位男生中,A1、A2、A3、A4、A5還喜歡看新聞,B1、B2、B3還喜歡看動畫片,C1、C2還喜歡看韓劇,現(xiàn)再從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.0050. 001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題p:a=-1;命題q:直線ax+y+1=0與直線x+ay+2a-1=0平行,則p是q( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=ln(5x-125)的定義域為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實數(shù)x,y,z滿足:x+y-6=0,z2+9=xy,則x2+$\frac{1}{3}$y2=( 。
A.6B.12C.18D.36

查看答案和解析>>

同步練習(xí)冊答案