15.等差數(shù)列{an}中an>0,且a1+a2+…+a10=30,則a5+a6=( 。
A.3B.6C.9D.36

分析 由已知結(jié)合等差數(shù)列的性質(zhì)可得5(a5+a6)=30,則答案可求.

解答 解:在等差數(shù)列{an}中,由an>0,且a1+a2+…+a10=30,得
(a1+a10)+(a2+a9)+(a3+a8)+(a4+a7)+(a5+a6)=30,
即5(a5+a6)=30,∴a5+a6=6.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lg$\frac{kx-1}{x-1}$.
(1)求f(x)的定義域;
(2)若f(x)在[2,+∞)上單調(diào)增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,空間四邊形ABCD中,E、F、G、H分別是AB、BC、CD,DA上的點(diǎn).且滿足$\frac{AE}{EB}$=$\frac{AH}{HD}$=$\frac{1}{2}$,$\frac{CF}{FB}$=$\frac{CG}{GD}$=2.
(1)求證:四邊形EFGH是梯形;
(2)若BD=a.求梯形EFGH的中位線的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求證:函數(shù)f(x)=2x+x-5在區(qū)間(1,2)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方體ABCD-A1B1C1D1中,三棱錐D1-AB1C的表面積與正方體的表面積的比為( 。
A.1:1B.1;$\sqrt{2}$C.1:$\sqrt{3}$D.1;2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過M,F(xiàn),O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為$\frac{3}{4}$.過定點(diǎn)D(0,p)作直線與拋物線C相交于A,B兩點(diǎn).
(I)求拋物線C的方程;
(II)若點(diǎn)N是點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),求△ANB面積的最小值;
(Ⅲ)是否存在垂直于y軸的直線l,使得l被以AD為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知雙曲線方程為C:$\frac{{x}^{2}}{k-2}$-$\frac{{y}^{2}}{1-k}$=1.
(1)求k的取值范圍;
(2)求雙曲線C的焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定義域?yàn)镽的函數(shù)f(x)滿足對(duì)任意實(shí)數(shù)x,y均有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>0,則解關(guān)于x的不等式f($\sqrt{x}$-log2x)>0的解集為(0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.絕對(duì)值不等式|x|<9的解集為(-9,9).

查看答案和解析>>

同步練習(xí)冊(cè)答案