19.(1)計(jì)算${(-\frac{27}{8})^{-\frac{2}{3}}}$+$\frac{lo{g}_{8}27}{lo{g}_{2}3}$+($\sqrt{2}$-$\sqrt{3}$)0-log31+2lg5+lg4-5${\;}^{lo{g}_{5}2}$
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求x+x-1的值.

分析 (1)直接利用有理指數(shù)冪以及對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.
(2)利用有理指數(shù)冪的運(yùn)算法則求解即可.

解答 (12分)
解:(1)${(-\frac{27}{8})^{-\frac{2}{3}}}$+$\frac{lo{g}_{8}27}{lo{g}_{2}3}$+($\sqrt{2}$-$\sqrt{3}$)0-log31+2lg5+lg4-5${\;}^{lo{g}_{5}2}$
=$\frac{4}{9}$+1+1-0+2-2=$\frac{22}{9}$
(2)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,兩邊平方可得:x+x-1+2=9
解得x+x-1=7.

點(diǎn)評(píng) 本題考查有理指數(shù)冪以及對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=2x+3,則f(-1)=( 。
A.2B.1C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.曲線f(x)=x3-x+2在點(diǎn)(1,f(1))處的切線方程為y=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=|x|+$\sqrt{a-{x^2}}-\sqrt{2}$(a>0)沒有零點(diǎn),則a的取值范圍是(  )
A.$(\sqrt{2},+∞)$B.(2,+∞)C.$(0,1)∪(\sqrt{2},+∞)$D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓方程為x2+$\frac{y^2}{4}$=1,過點(diǎn)M(0,1)的直線L交橢圓于點(diǎn)A、B,O為坐標(biāo)原點(diǎn),點(diǎn)P滿足$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,當(dāng)L繞點(diǎn)M旋轉(zhuǎn)時(shí),求
(1)當(dāng)L的斜率為1時(shí),求三角形ABC的面積;
(2)動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{BC}$=3$\overrightarrow{CD}$,則( 。
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知扇形的圓心角為$\frac{π}{3}$,半徑為2,則該扇形的面積為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)( A>0,ω>0,$|φ|<\frac{π}{2}$),若函數(shù)y=f(x)的圖象與x軸的任意兩個(gè)相鄰交點(diǎn)間的距離為$\frac{π}{2}$,當(dāng)$x=\frac{π}{6}$時(shí),函數(shù)y=f(x)取得最大值3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間;
(3)若$x∈[{-\frac{π}{6},\frac{π}{3}}]$,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等比數(shù)列{an}滿足a2+2a1=4,${a_3}^2={a_5}$,則該數(shù)列的前5項(xiàng)的和為31.

查看答案和解析>>

同步練習(xí)冊(cè)答案