6.已知角α的終邊經(jīng)過(guò)點(diǎn)P(-2,4),則sinα=$\frac{2\sqrt{5}}{5}$.

分析 由三角函數(shù)的定義可直接求得sinα.

解答 解:∵角α的終邊經(jīng)過(guò)點(diǎn)P(-2,4),
∴x=-2,y=4,r=2$\sqrt{5}$,
∴sinα=$\frac{4}{2\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$.
故答案為:$\frac{2\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=|{2-\frac{1}{x}}|(x>0)$.
(1)當(dāng)0<a<b且f(a)=f(b)時(shí),①求$\frac{1}{a}+\frac{1}$的值;②求$\frac{1}{a^2}+\frac{2}{b^2}$的取值范圍;
(2)已知函數(shù)g(x)的定義域?yàn)镈,若存在區(qū)間[m,n]⊆D,當(dāng)x∈[m,n]時(shí),g(x)的值域?yàn)閇m,n],則稱函數(shù)g(x)是D上的“保域函數(shù)”,區(qū)間[m,n]叫做“等域區(qū)間”.試判斷函數(shù)f(x)是否為(0,+∞)上的“保域函數(shù)”?若是,求出它的“等域區(qū)間”;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.關(guān)于下列命題:
①存在角α滿足$sinα+cosα=\frac{3}{2}$
②函數(shù)$y=cos2({\frac{π}{4}-x})$是偶函數(shù);
③函數(shù)$f(x)=4sin({2x+\frac{π}{3}})$關(guān)于直線$x=-\frac{5π}{12}$對(duì)稱
④函數(shù)$f(x)=4sin({2x+\frac{π}{3}})$可改寫(xiě)為$f(x)=4cos({2x-\frac{π}{6}})$
寫(xiě)出所有正確的命題的題號(hào):③④ (注:把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知全集U={1,2,3,4,5,6,7},設(shè)集合A={2,4,5},集合B={1,2,3,4},則(CUA)∩B=( 。
A.{2,4}B.{1,3}C.{1,3,6,7}D.{1,3,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z=1-i,則$\frac{{{z^2}-2z}}{z-1}$=( 。
A.$\frac{i}{2}$B.-$\frac{i}{2}$C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將函數(shù)f(x)=sin(2x+$\frac{π}{4}$)的圖象向右平移$\frac{π}{8}$個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式為g(x)=sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.兩向量$\overrightarrow{AB}=(4,-3),\overrightarrow{CD}=(-5,-12)$,則$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影為( 。
A.(-1,-15)B.(-20,36)C.$\frac{16}{13}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若不等式a2+b2+2>λ(a+b)對(duì)任意正數(shù)a,b恒成立,實(shí)數(shù)λ的取值范圍是( 。
A.$({-∞,\frac{1}{2}})$B.(-∞,1)C.(-∞,2)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=2sin(3x+φ)是偶函數(shù)的一個(gè)充分不必要條件是$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案