14.已知全集U={1,2,3,4,5,6,7},設集合A={2,4,5},集合B={1,2,3,4},則(CUA)∩B=( 。
A.{2,4}B.{1,3}C.{1,3,6,7}D.{1,3,5,6,7}

分析 直接利用交、并、補集的混合運算得答案.

解答 解:∵U={1,2,3,4,5,6,7},A={2,4,5},
∴CUA={1,3,6,7},
又B={1,2,3,4},
∴(CUA)∩B={1,3}.
故選:B.

點評 本題考查交、并、補集的混合運算,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)$y=tan(2x+\frac{π}{6})$的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{x-y-2≥0}\\{x+y-6≤0}\\{x-2y-2≤0}\end{array}\right.$,目標函數(shù)z=x+ay.
(1)當a=-2時,求目標函數(shù)z的取值范圍;
(2)若使目標函數(shù)取得最小值的最優(yōu)解有無數(shù)個,求$\frac{y}{x-a}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)的圖象與直線y=m(-A<m<0)的三個相鄰交點的橫坐標分別是3,5,9,則f(x)的單調遞增區(qū)間是(  )
A.[6kπ+1,6kπ+4],k∈ZB.[6k-2,6k+1],k∈ZC.[6k+1,6k+4],k∈ZD.[6kπ-2,6kπ+1],k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知正方體ABCD-A1B1C1D1,下列向量的數(shù)量積不為0的是(  )
A.$\overrightarrow{A{D}_{1}}•\overrightarrow{{B}_{1}C}$B.$\overrightarrow{B{D}_{1}}•\overrightarrow{AC}$C.$\overrightarrow{B{D}_{1}}•\overrightarrow{BC}$D.$\overrightarrow{AB}•\overrightarrow{A{D}_{1}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知平行四邊形ABCD的三個頂點的坐標分別為A(0,0),B(2,-1),C(4,2).
(1)求直線CD的方程;
(2)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知角α的終邊經(jīng)過點P(-2,4),則sinα=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知數(shù)列{an}是等差數(shù)列,公差d≠0,a1=1,a1,a3,a6成等比數(shù)列,則數(shù)列{an}的公差d等于$\frac{1}{4}$;前n項和Sn等于$\frac{{n}^{2}+7n}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.化簡(sin2x+tan$\frac{x}{2}$tanx+cos2x)$\frac{sin2x}{2cosx}$.

查看答案和解析>>

同步練習冊答案