分析 令g(x)=t,由題意畫出函數(shù)y=f(t)的圖象,利用y=f(t)與y=m的圖象最多有3個零點(diǎn),可知要使函數(shù)y=f(g(x))-m有6個零點(diǎn),則t=x2-2x+2m-1中每一個t的值對應(yīng)2個x的值,則t的值不能取最小值,求出y=f(t)與y=m交點(diǎn)橫坐標(biāo)的最小值,由其絕對值大于2m-2,結(jié)合0<m<3求得實(shí)數(shù)m的取值范圍.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$的圖象如圖所示,
令g(x)=t,y=f(t)與y=m的圖象最多有3個零點(diǎn),
當(dāng)有3個零點(diǎn),則0<m<3,從左到右交點(diǎn)的橫坐標(biāo)依次t1<t2<t3,
由于函數(shù)y=f(g(x))-m有6個零點(diǎn),t=x2-2x+2m-1,
則每一個t的值對應(yīng)2個x的值,則t的值不能取最小值,
函數(shù)t=x2-2x+2m-1對稱軸x=1,則t的最小值為1-2+2m-1=2m-2,
由圖可知,2t1+1=-m,則${t}_{1}=\frac{-m-1}{2}$,
由于t1是交點(diǎn)橫坐標(biāo)中最小的,滿足$\frac{-m-1}{2}>2m-2$①,
又0<m<3②,
聯(lián)立①②得0$<m<\frac{3}{5}$.
∴實(shí)數(shù)m的取值范圍是(0,$\frac{3}{5}$).
故答案為:(0,$\frac{3}{5}$).
點(diǎn)評 本題考查根的存在性及根的個數(shù)判斷,考查數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,屬有一定難度題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {(0,1)} | B. | {0,1} | C. | {(1,1),(1,2),(2,1),(2,2)} | D. | {(0,0),(0,1),(1,0),(1,1)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com