分析 由在長方形中,設一條對角線與其一頂點出發(fā)的兩條邊所成的角分別是α,β,則有sin2α+sin2β=1,我們根據(jù)平面性質可以類比推斷出空間性質,我們易得答案.
解答 解:有如下命題:長方體ABCD-A1B1C1D1中,對角線A1C與平面A1B、A1C1、A1D所成的角分別為α、β、γ,則 sin2α+sin2β+sin2γ=1.
證明:如圖,對角線A1C與平面A1B所成的角為∠CA1B=α,
在直角三角形CA1B中,sin2α=$\frac{B{C}^{2}}{{A}_{1}{C}^{2}}$,
同理:sin2β=$\frac{C{{C}_{1}}^{2}}{{A}_{1}{C}^{2}}$,sin2γ=$\frac{C{D}^{2}}{{C}_{1}{C}^{2}}$
∴sin2α+sin2β+sin2γ=$\frac{B{C}^{2}}{{A}_{1}{C}^{2}}$+$\frac{C{{C}_{1}}^{2}}{{A}_{1}{C}^{2}}$+$\frac{C{D}^{2}}{{C}_{1}{C}^{2}}$=1.
故答案為:1.
點評 本題考查的知識點是類比推理,在由平面圖形的性質向空間物體的性質進行類比時,常用的思路有:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,由平面圖形中面的性質類比推理出空間中體的性質,或是將平面中的兩維性質,類比推斷到空間中的三維性質.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,0)∪(0,1) | B. | [-2,0)∪[1,+∞) | C. | [-2,1] | D. | (-∞,-2]∪(0,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com