17.現(xiàn)定義一種運算“⊕”:對任意實數(shù)a,b,a⊕b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,設(shè)f(x)=(x2-2x)⊕(x+3),若函數(shù)g(x)=f(x)+k的圖象與x軸恰有三個公共點,則實數(shù)k的取值范圍是[-2,-1).

分析 利用定義比較的大小,從而化簡f(x)的解析式,作其圖象,結(jié)合圖象解得.

解答 解:∵x2-2x-(x+3)-1=x2-3x-4=(x-4)(x+1),
∴f(x)=(x2-2x)⊕(x+3)=$\left\{\begin{array}{l}{x+3,x≤-1或x≥4}\\{{x}^{2}-2x,-1<x<4}\end{array}\right.$,
作函數(shù)y=f(x)的圖象如下,
結(jié)合圖象可知,
當(dāng)-1<-k≤2時,函數(shù)g(x)=f(x)+k的圖象與x軸恰有三個公共點,
故答案為:[-2,-1).

點評 本題考查了學(xué)生對新定義的接受與應(yīng)用能力及分段函數(shù)的應(yīng)用,同時考查了數(shù)形結(jié)合的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,角C,B所對的邊長為c,b,則“c=b”是“ccosC=bcosB”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.計算[(-$\sqrt{2}$)2]-$\frac{1}{2}$的結(jié)果是( 。
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知公差不為0的等差數(shù)列{an}的首項a1=a(a>0),該數(shù)列的前n項和為Sn,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式及Sn;
(Ⅱ)設(shè)bn=$\frac{1}{{S}_{n}}$,cn=$\frac{1}{{a}_{{2}^{n-1}}}$,且Bn,Cn分別為數(shù)列{bn},{cn}的前n項和,當(dāng)n≥2時,試比較Bn與Cn的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若bn=anan+1,Sn為數(shù)列{bn}的前n項和,對于任意的正整數(shù)n,Sn>2λ-$\frac{1}{3}$恒成立,求Sn及實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù))
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與x軸的交點是M,N是曲線C上一動點,求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足8Sn=a${\;}_{n}^{2}$+4an+3(∈N*),且a1<3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{a}_{n}+3-3n}{{2}^{n-1}}$,設(shè){bn}的前n項和為Tn,若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$對一切n∈N*恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知四面體ABCD的外接球球心O在棱CD上,$AB=\sqrt{3}$,CD=2,則A、B兩點在四面體ABCD的外接球上的球面距離是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐A-BCDE中,AB、BC、BE兩兩垂直且AB=BC=BE,DE∥BC,DE=2BC,F(xiàn)是AE的中點.
(1)求證:BF∥面ACD;
(2)求證:面ADE⊥面ACD.

查看答案和解析>>

同步練習(xí)冊答案