7.已知點(diǎn)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)右支上一點(diǎn),以P為圓心能作一圓恰好過雙曲線的左頂點(diǎn)A和右焦點(diǎn)F,則該雙曲線的離心率e的取值范圍為( 。
A.(1,2]B.(1,3]C.[2,+∞)D.[3,+∞)

分析 由題意求出A(-a,0)、F(c,0),由圓的性質(zhì)求出圓心P的橫坐標(biāo),代入雙曲線方程求出縱坐標(biāo)的平方,根據(jù)兩點(diǎn)之間的距離公式和|AF|≤2|PA|,列出不等式化簡后求出離心率e的取值范圍.

解答 解:由題意得,A(-a,0),F(xiàn)(c,0),
因?yàn)锳F是圓P的弦,所以圓心P的橫坐標(biāo):x=$\frac{-a+c}{2}$,
代入$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$得,${y}^{2}=\frac{^{2}(c+a)(c-3a)}{4{a}^{2}}$,
由|AF|≤2|PA|得,a+c≤2$\sqrt{{(\frac{-a+c}{2}+a)}^{2}+{y}^{2}}$,
則(a+c)2≤4[$(\frac{a+c}{2})^{2}+\frac{^{2}(c+a)(c-3a)}{4{a}^{2}}$],
化簡得$\frac{^{2}(c+a)(c-3a)}{4{a}^{2}}$≥0,即c-3a≥0,
即e=$\frac{c}{a}$≥3,所以離心率e的取值范圍為[3,+∞),
故選:D.

點(diǎn)評(píng) 本題考查求雙曲線離心率、標(biāo)準(zhǔn)方程與簡單幾何性質(zhì),以及圓的有關(guān)性質(zhì)的應(yīng)用,考查了化簡、變形能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若30°≤θ<90°或90°<θ<120°,試確定tanθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(sinx-cosx,1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,x∈R.
(1)求函數(shù)f(x)圖象的對(duì)稱中心坐標(biāo);
(2)求函數(shù)f(x)在區(qū)間[$\frac{π}{8}$,$\frac{3π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知點(diǎn)P為矩形ABCD所在平面外一點(diǎn),AB=3,BC=2,平面PAB∩平面PCD=l.
(1)求證:l⊥AD;
(2)若點(diǎn)P在平面ABCD上的射影0在線段CD上,滿足CO=20D,且直線PB與平面ABCD所成角的正切值為$\frac{1}{2}$,求四棱錐P-DABO的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{3}+\frac{y^2}{5}=1$的焦距是( 。
A.$2\sqrt{2}$B.$4\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知常數(shù)a>0,函數(shù)好h(x)=ln(1+ax),g(x)=$\frac{2x}{x+2}$
(Ⅰ)討論f(x)=h(x)-g(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,且f(x1)+f(x2)>0,求a的取值范圍.
(Ⅲ)當(dāng)a=1時(shí),證明:當(dāng)0<x<2時(shí),h(x)+$\sqrt{x+1}$-1$<\frac{9x}{x+6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{3}{2}$B.$\frac{{6+\sqrt{2}+\sqrt{6}}}{2}$C.$\frac{1}{2}$D.$\frac{{3+\sqrt{2}+\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知橢圓O:$\frac{{x}^{2}}{4}$+y2=1的右焦點(diǎn)為F,點(diǎn)B,C分別是橢圓O的上、下頂點(diǎn),點(diǎn)P是直線l:y=-2上的一個(gè)動(dòng)點(diǎn)(與y軸交點(diǎn)除外),直線PC交橢圓于另一點(diǎn)M.
(1)當(dāng)直線PM過橢圓的右焦點(diǎn)F時(shí),求△FBM的面積;
(2)①記直線BM,BP的斜率分別為k1,k2,求證:k1•k2為定值;
②求$\overrightarrow{PB}$•$\overrightarrow{PM}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F,其右準(zhǔn)線與x軸的交點(diǎn)為A,若在橢圓上存在點(diǎn)P滿足PF=AF,則$\frac{c^2}{a^2}$-2(lnc-lna)的范圍是(1,$\frac{1}{4}$+2ln2].

查看答案和解析>>

同步練習(xí)冊(cè)答案