16.過點(diǎn)P(3,4)作圓(x-1)2+y2=1的切線,切點(diǎn)為A,B,則直線AB的方程為2x+4y-3=0.

分析 求出以(3,4)、C(1,0)為直徑的圓的方程,將兩圓的方程相減可得公共弦AB的方程.

解答 解:圓(x-1)2+y2=1的圓心為C(1,0),半徑為1,
以(3,4)、C(1,0)為直徑的圓的方程為(x-2)2+(y-2)2=5,
將兩圓的方程相減可得公共弦AB的方程2x+4y-3=0,
故答案為:2x+4y-3=0.

點(diǎn)評(píng) 本題考查直線和圓的位置關(guān)系以及圓和圓的位置關(guān)系、圓的切線性質(zhì),體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.方程lgx+x=0的根所在的區(qū)間是(  )
A.$(0,\frac{1}{4})$B.$(\frac{1}{4},\frac{1}{2})$C.$(\frac{1}{2},\frac{3}{4})$D.$(\frac{3}{4},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.y=cos($\frac{x}{2}$-$\frac{π}{6}$)(-π≤x≤π)的值域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-1,1]C.[-$\frac{1}{2}$,1]D.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD,AB=BD=CD=1,則該三棱錐外接球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}為等差數(shù)列,且a1=8,a4=2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a、b是兩條不同的直線,α、β是兩個(gè)不同的平面,下列命題中正確的是( 。
A.若α⊥β,a?α,b?β,則a⊥bB.若α∥β,a?α,b?β,則a∥b
C.若α⊥β,a?α,a⊥b,則b∥βD.若a⊥α,a∥b,b∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知sinx+cosx=a(0$≤a≤\sqrt{2}$),則sinnx+cosnx=($\frac{a+\sqrt{2-{a}^{2}}}{2}$)n+($\frac{a-\sqrt{2-{a}^{2}}}{2}$)n(關(guān)于a的表達(dá)式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知兩圓C1:x2+2x+y2-48=0,C2:x2-2x+y2=0,若動(dòng)圓P與圓C1相內(nèi)切,與圓C2相外切.
(1)求動(dòng)圓圓心P的軌跡方程.
(2)若直線1:(k+1)x+(k-1)y+(2k+2)=0,判斷直線1與動(dòng)圓圓心P所在曲線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC中角A,B,C的對(duì)邊分別是a,b,c,滿足c=a•cos(A+C),則tanC的最大值為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案