6.已知△ABC中角A,B,C的對(duì)邊分別是a,b,c,滿足c=a•cos(A+C),則tanC的最大值為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 由已知可得sinC=sin(A+B)=sinAcosB+cosAsinB=-sinAcosB,從而化簡(jiǎn)得tanB=-2tanA,由tanC=-tan(A+B)=$\frac{1}{\frac{1}{tanA}+2tanA}$,根據(jù)不等式,即可解得
tanC的最大值.

解答 解:由c=a•cos(A+C),
∴sinC=sinA•cos(A+C)=-sinAcosB,
=cos(A+C)=-cosB,
∵sinC=sin(A+B)=sinAcosB+cosAsinB=-sinAcosB,
∴cosAsinB=-2sinAcosB,
∴tanB=-2tanA,
∴tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{tanA}{1+2ta{n}^{2}A}$=$\frac{1}{\frac{1}{tanA}+2tanA}$,
∵$\frac{1}{tanA}$+2tanA≥2$\sqrt{2}$,當(dāng)且僅當(dāng)tan2A=$\frac{1}{2}$取等號(hào),
∴tanC≤$\frac{\sqrt{2}}{4}$
∴最大值是$\frac{\sqrt{2}}{4}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了兩角和與差的余弦函數(shù)公式、正弦函數(shù)公式、正切函數(shù)公式的應(yīng)用,考查了基本不等式的應(yīng)用,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.過(guò)點(diǎn)P(3,4)作圓(x-1)2+y2=1的切線,切點(diǎn)為A,B,則直線AB的方程為2x+4y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)滿足f(x+1)=x2-x+2,則f(-1)=( 。
A.8B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法中正確的是(  )
A.向量$\overrightarrow{a}$與非零向量$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$共線
B.任意兩個(gè)相等向量不一定是共線向量
C.任意兩個(gè)共線向量相等
D.若向量$\overrightarrow{a}$與$\overrightarrow$共線,則$\overrightarrow{a}$=λ$\overrightarrow$(λ>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖所示,在三棱柱ABC-A1B1C1中,M是BB1的中點(diǎn),化簡(jiǎn)下列各式,并在圖中標(biāo)出化簡(jiǎn)得到的向量:
(1)$\overrightarrow{CB}$+$\overrightarrow{B{A}_{1}}$;
(2)$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$;
(3)$\overrightarrow{A{A}_{1}}$-$\overrightarrow{AC}$-$\overrightarrow{CB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=$\frac{\sqrt{x+2}}{x}$的定義域?yàn)閇-2,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.1~100中所有奇數(shù)的和為( 。
A.99B.1250C.2500D.2525

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知冪函數(shù)f(x)=(t3-t+1)${x}^{\frac{7+3t-2{t}^{2}}{5}}$是偶函數(shù),且在(0,+∞)上為增函數(shù),則t的值為1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.“x-3=0”是“(x-3)(x+4)=0”的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案