4.若命題“存在實數(shù)x0∈[1,2],使得ex+x2+3-m<0”是假命題,則實數(shù)m的取值范圍為(-∞,e+4].

分析 根據(jù)特稱命題是假命題,則特稱命題的否定是全稱命題為真命題,進行求解即可.

解答 解:∵命題“存在實數(shù)x0∈[1,2],使得ex+x2+3-m<0”是假命題,
即命題“任意實數(shù)x∈[1,2],使得ex+x2+3-m≥0”是真命題,
即ex+x2+3≥m,
設(shè)f(x)=ex+x2+3,
則函數(shù)f(x)在[1,2]上為增函數(shù),
則f(x)的最小值為f(1)=e+1+3=e+4,
故m≤e+4,
故答案為:(-∞,e+4].

點評 本題主要考查命題真假的應(yīng)用,根據(jù)特稱命題為假命題,轉(zhuǎn)化為命題的否定是真命題,利用參數(shù)分離法進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\frac{sinα-3cosα}{sinα+cosα}$=2,則tan2α=$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow a=(sinθ,1)$,$\overrightarrow b=(cosθ,-2)$,θ為第二象限角.
(1)若$\overrightarrow a•\overrightarrow b=-\frac{7}{3}$,求sinθ-cosθ的值;
(2)若$\overrightarrow a$∥$\overrightarrow b$,求$\frac{{3-{{cos}^2}θ}}{{{{sin}^2}θ}}+3tan2θ$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f (x) 的部分對應(yīng)值如表所示.?dāng)?shù)列{an}滿足a1=1,且對任意n∈N*,點(an,an+1)都在函數(shù)f(x)的圖象上,則a2016的值為( 。
x1234
f(x)3124
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x+$\sqrt{3}$y+2=0的傾角為( 。
A.-$\frac{π}{6}$B.$\frac{5π}{6}$C.-$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知關(guān)于點(x,y)的不等式組$\left\{\begin{array}{l}{y≤1}\\{2x-y+2≤0}\\{4x-y+5≥0}\end{array}\right.$表示的平面區(qū)域為D,則D內(nèi)使得z=x2+y2取得最大值和最小值時的最優(yōu)解組成的集合為{($-\frac{3}{2},-1$),($-\frac{4}{5},\frac{2}{5}$)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=2sin({x-\frac{π}{6}}),x∈R$,若f(x)≥1,則x的取值范圍是( 。
A.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+π,k∈Z}\right\}$B.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$
C.$\left\{{x|2kπ+\frac{π}{6}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$D.$\left\{{x|kπ+\frac{π}{6}≤x≤kπ+\frac{5π}{6},k∈Z}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow{m}=(λ+1,1)$,$\overrightarrow{n}=(λ+2,2)$,若($\overrightarrow{m}+\overrightarrow{n}$)∥($\overrightarrow{m}-\overrightarrow{n}$),則λ=0.

查看答案和解析>>

同步練習(xí)冊答案