5.已知函數(shù)f1(x)=$\frac{x}{x+3}$,(x>0),對于n∈N*,定義fn+1(x)=f1[fn(x)],則函數(shù)fn(x)的值域為(0,$\frac{2}{{3}^{n}-1}$).

分析 根據(jù)定義分別計算f1(x),f2(x),f3(x),然后根據(jù)前三個函數(shù)的值域歸納出fn(x)的表達式,然后利用分式函數(shù)求函數(shù)的值域.

解答 解:根據(jù)定義可知f2(x)=f1[f1(x)]=$\frac{\frac{x}{x+3}}{\frac{x}{x+3}+3}$=$\frac{x}{4x+9}$,
f3(x)=f1[f2(x)]=$\frac{\frac{x}{4x+9}}{\frac{x}{4x+9}+3}$=$\frac{x}{13x+27}$,
f4(x)=f1[f3(x)]=$\frac{x}{40x+81}$,
∴fn(x)=$\frac{x}{\frac{1}{2}({3}^{n}-1)x+{3}^{n}}$=$\frac{2}{{3}^{n}-1}•\frac{x}{x+\frac{2•{3}^{n}}{{3}^{n}-1}}<\frac{2}{{3}^{n}-1}$,
∴fn(x)的值域為(0,$\frac{2}{{3}^{n}-1}$).
故答案為:(0,$\frac{2}{{3}^{n}-1}$).

點評 本題考查函數(shù)的值域,求出前幾項歸納出fn(x)的表達式是解決本題的關鍵,考查學生的觀察分析能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.在平面直角坐標系xOy中,已知圓C:(x-a)2+(y+2a-1)2=2(-1≤a≤1),直線l:y=x+b(b∈R),若動圓C總在直線l下方且它們至多有1個交點,則實數(shù)b的最小值是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在等差數(shù)列{an}中,已知${a_3}=-2,{a_n}=\frac{3}{2},{S_n}=-\frac{15}{2}$,則a1=-3或$-\frac{19}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.時鐘的分針在1點到3點20分這段時間里轉(zhuǎn)過的弧度數(shù)為( 。
A.$\frac{14π}{3}$B.$-\frac{14π}{3}$C.$\frac{7π}{18}$D.$-\frac{7π}{18}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.畫出計算1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{n}$的值的一個算法框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow$|=6,向量$\overrightarrow{c}-\overrightarrow{a}$,$\overrightarrow c-\overrightarrow b$的夾角為$\frac{2π}{3}$,|$\overrightarrow c$-$\overrightarrow a$|=2$\sqrt{3}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為$\frac{π}{6}$,$\overrightarrow a•\overrightarrow c$的最大值為$\frac{6\sqrt{3}+9}{32}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系xOy中,已知直線l:3x+2y-8=0,圓M:(x-3)2+(y-2)2=1.
(1)設A,B分別為直線l與圓M上的點,求線段AB長度的取值范圍;
(2)試直接寫出一個圓N(異于圓M)的方程(不必寫出過程),使得過直線l上任一點P均可作圓M與圓N的切線,切點分別為TM,TN,且PTM=PTN;
(3)求證:存在無窮多個圓N(異于圓M),滿足對每一個圓N,過直線l上任一點P均可作圓M與圓N的切線,切點分別為TM,TN,且PTM=PTN

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.從一副撲克牌(去掉大、小王,共52張)中隨機選取一張,給出如下四組事件:
①“這張牌是紅心”與“這張牌是方塊”;
②“這張牌是紅色牌”與“這張牌是黑色牌”;
③“這張牌牌面是2,3,4,6,10之一”與“這張牌是方塊”;
④“這張牌牌面是2,3,4,5,6,7,8,9,10之一”與“這張牌牌面是A,K,Q,J之一”,
其中互為對立事件的有②④.(寫出所有正確的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設f(x)=asin2x+bcos2x,且滿足a,b∈R,ab≠0,且f($\frac{π}{6}-x$)=f($\frac{π}{6}+x$),則下列說法正確的是( 。
A.|f($\frac{7π}{10}$)|<|f($\frac{π}{5}$)|
B.f(x)是奇函數(shù)
C.f(x)的單調(diào)遞增區(qū)間是[k$π+\frac{π}{6},kπ+\frac{2}{3}π$](k∈Z)
D.a=$\sqrt{3}$b

查看答案和解析>>

同步練習冊答案