15.已知x,y滿足$\left\{\begin{array}{l}{y≤x+\frac{9}{2}}\\{x+2y≥6}\\{y≥3x-a(a∈z)}\end{array}\right.$,若z=4x-y的最大值為$\frac{33}{4}$,則a的值為( 。
A.7B.6C.5D.4

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,和目標(biāo)函數(shù)取得最大值時(shí)的直線方程求出交點(diǎn)坐標(biāo)A,利用A也在直線y=3x-a上,代入求解即可.

解答 解:作出不等式組$\left\{\begin{array}{l}{y≤x+\frac{9}{2}}\\{x+2y≥6}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖
∵z=4x-y的最大值為$\frac{33}{4}$,
∴作出z=4x-y=$\frac{33}{4}$的圖象,
由圖象知z=4x-y=$\frac{33}{4}$與y=x+$\frac{9}{2}$,相交于A,
由$\left\{\begin{array}{l}{4x-y=\frac{33}{4}}\\{y=x+\frac{9}{2}}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{17}{4}}\\{y=\frac{35}{4}}\end{array}\right.$,即A($\frac{17}{4}$,$\frac{35}{4}$),
同時(shí)A也在y=3x-a上,
則$\frac{35}{4}$=3×$\frac{17}{4}$-a,
即a=4,
故選:D

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件先作出目標(biāo)函數(shù)求得最大值時(shí)的直線的交點(diǎn)坐標(biāo),利用代入法和數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,正三棱柱ABC-A1B1C1中,E,F(xiàn)分別是BC,CC1的中點(diǎn).
(Ⅰ)證明:平面AEF⊥平面B1BCC1;
(Ⅱ)若該三棱柱所有的棱長(zhǎng)均為2,求三棱錐B1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)復(fù)數(shù)z=$\frac{2-i}{1+i}$(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知{an}是等差數(shù)列,滿足a1=3,a5=15,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}(n∈N+)是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知復(fù)數(shù)z滿足z•(1+2i6)=$\frac{2-3i}{i}$,(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為(  )
A.-2B.2C.2iD.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)計(jì)算法將1573分解成奇因數(shù)的乘積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知復(fù)數(shù)z=$\frac{3-i}{1+ai}$是純虛數(shù),則實(shí)數(shù)a=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=2x-2,g(x)=ax(x-2a)同時(shí)滿足條件:①?x∈R,f(x)<0或g(x)<0;②?x∈(-∞,-4),使得f(x)g(x)<0,則實(shí)數(shù)a的取值范圍是( 。
A.(-2,0)B.(-∞,-2)C.(-8,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知質(zhì)數(shù)p,q滿足q5-2p2=1,則p+q=14.

查看答案和解析>>

同步練習(xí)冊(cè)答案