4.函數(shù)y=$\sqrt{lo{g}_{2}(2x-1)}$的定義域是(  )
A.($\frac{1}{2}$,1)B.($\frac{1}{2}$,1]C.($\frac{1}{2}$,+∞)D.[1,+∞)

分析 根據(jù)對數(shù)函數(shù)的性質(zhì)結(jié)合二次根式的性質(zhì)解出即可.

解答 解:由題意得:
2x-1≥1,解得:x≥1,
故選:D.

點(diǎn)評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列關(guān)于函數(shù)y=tan(x+$\frac{π}{3}$)的說法正確的是( 。
A.在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上單調(diào)遞增B.值域?yàn)閇-1,1]
C.圖象關(guān)于直線x=$\frac{π}{6}$成軸對稱D.圖象關(guān)于點(diǎn)(-$\frac{π}{3}$,0)成中心對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列四個(gè)命題:①?zèng)]有公共點(diǎn)的兩條直線平行;②互相垂直的兩條直線是相交直線;③既不平行也不相交的兩條直線是異面直線;④不同在任何一個(gè)平面內(nèi)的兩條直線是異面直線.
其中正確的命題是( 。
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在R上的函數(shù),且滿足①f(4)=0;②曲線y=f(x+1)關(guān)于點(diǎn)(-1,0)對稱;③x∈(-4,0)時(shí),f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m).若y=f(x)在x∈[-4,4]上恰有7個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,-e-2B.(-1-e-2,-e-2C.(-1-e-2,0)D.(-1-e-2,-1-3e-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某廠通過技術(shù)改造降低了產(chǎn)品A對重要原材料G的消耗,如表提供了該廠技術(shù)改造后生產(chǎn)產(chǎn)品A的過程記錄的產(chǎn)量x(噸)與原材料G相應(yīng)的消耗量y(噸)的幾組對照數(shù)據(jù):
 x 3 4 5 6
 y 1.6 2.2 3.0 3.4
(1)請?jiān)趫Da中畫出如表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)50噸產(chǎn)品A需要消耗原材料G多少噸?參考公式:最小二乘法求線性回歸方程
系數(shù)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,當(dāng)x=$\frac{π}{12}$時(shí),f(x)取得最大值.
(1)求f(x)的解析式;
(2)求出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p“若sinα=$\frac{1}{2}$,則α=30°;命題q:若點(diǎn)(m,n)在直線x+y+1=0的上方,則m+n+1>0,下列命題是真命題的是( 。
A.p∨¬qB.¬p∧qC.¬q∧¬qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知等差數(shù)列{an}中,a2=2,a5=5.
(Ⅰ)若bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)的和Sn
 (Ⅱ)若c1=a1,cn-cn-1=an,求數(shù)列{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$\sqrt{(2-π)^{2}}$+2log510+log50.25的值為π.

查看答案和解析>>

同步練習(xí)冊答案