20.若sin(π-α)=$\frac{1}{2}$,則tanα的值為(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.$±\frac{\sqrt{3}}{3}$D.$±\sqrt{3}$

分析 利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式的應(yīng)用可求sinα=$\frac{1}{2}$,即可求得cosα=±$\sqrt{1-si{n}^{2}α}$的值,從而可求tanα=$\frac{sinα}{cosα}$.

解答 解:∵sin(π-α)=sinα=$\frac{1}{2}$,
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\frac{\sqrt{3}}{2}$,
∴tanα=$\frac{sinα}{cosα}$=±$\frac{\sqrt{3}}{3}$.
故選:C.

點(diǎn)評 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,1),向量$\overrightarrow{AB}$=(-1,1),則$(\overrightarrow{OA}+\overrightarrow{OB})•(\overrightarrow{OA}-\overrightarrow{OB})$=( 。
A.-4B.-2C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.寒假里5名同學(xué)結(jié)伴乘動車外出旅游,實(shí)名制購票,每人一座,恰在同一排A,B,C,D,E五個座位
(一排共五個座位),上車后五人在這五個座位上隨意坐,則恰有一人坐對與自己車票相符座位的坐法有45種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C的對邊分別為a,b,c已知sinA+sinC=2sin(A+C)
(Ⅰ)求證:a,b,c成等差數(shù)列;
(Ⅱ)若b=1,B=$\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項和為Sn,且S3=9,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若an≠a1時,數(shù)列{bn}滿足bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinα=2cosα,則$\frac{sinα-cosα}{sinα+cosα}$的值為( 。
A.1B.-$\frac{1}{3}$C.$\frac{1}{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$θ∈(\frac{π}{2},\;π)$,且$sinθ=\frac{3}{5}$.
(Ⅰ)tanθ=-$\frac{3}{4}$;
(Ⅱ)求$cos(θ+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知動圓C過點(diǎn)(1,0),且于直線x=-1相切.
(1)求圓心C的軌跡M的方程;
(2)A,B是M上的動點(diǎn),O是坐標(biāo)原點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}=-4$,求證:直線AB過定點(diǎn),并求出該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.正數(shù)數(shù)列{an}中,a1=3,an+1=ban+1(b是常數(shù),n=1,2,3,…),且a1-1,a2+1,a3-1成等差數(shù)列.
(1)求b的值;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案