15.若向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,-3),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

分析 求出$\overrightarrow{a}•\overrightarrow$,|$\overrightarrow{a}$|,|$\overrightarrow$|,代入夾角公式計(jì)算.

解答 解:$\overrightarrow{a}•\overrightarrow$=1-6=-5,|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow$|=$\sqrt{10}$,
∴cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=-$\frac{\sqrt{2}}{2}$.
∴向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{3π}{4}$.
故選D.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義在R上的奇函數(shù),f(x+1)是偶函數(shù),當(dāng)x∈(2,4)時(shí),f(x)=|x-3|,則f(1)+f(2)+f(3)+f(4)=( 。
A.1B.0C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將直徑為2的半圓繞直徑所在的直線旋轉(zhuǎn)半周而形成的曲面所圍成的幾何體的表面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列四個(gè)命題:
(1)方程x2+y2-2x-1=0表示的是圓;
(2)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離之和為一定長(zhǎng),則動(dòng)點(diǎn)的軌跡為橢圓;
(3)拋物線x=2y2的焦點(diǎn)坐標(biāo)是$({\frac{1}{8},0})$;
(4)若雙曲線$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{k}$=1的離心率為e,且1<a<2,則k的取值范圍是k∈(-12,0)
其中正確命題的序號(hào)是(1)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在△OMN中,A,B分別是OM,ON中點(diǎn),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),且點(diǎn)P落在四邊形ABNM內(nèi)(含邊界),則x2+y2的取值范圍是(  )
A.[1,2]B.[1,4]C.$[\frac{1}{2},1]$D.$[\frac{1}{2},4]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})過點(diǎn)({1,\frac{{\sqrt{6}}}{3}})$,離心率為$\frac{{\sqrt{6}}}{3}$.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓C的下頂點(diǎn)為A,直線l過定點(diǎn)$Q({0,\frac{3}{2}})$,與橢圓交于兩個(gè)不同的點(diǎn)M、N,且滿足|AM|=|AN|.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y2=4x上一點(diǎn)P到它的焦點(diǎn)F的距離為5,O為坐標(biāo)原點(diǎn),則△PFO的面積為(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知奇函數(shù)f(x)在定義域[-2,2]上單調(diào)遞減,求滿足f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x,且f(a+2)=12,g(x)=2ax-9x
(1)求g(x)的解析式;          
(2)當(dāng)x∈[-2,1]時(shí),求g(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案