8.銳角△ABC中,已知a=$\sqrt{3}$,A=$\frac{π}{3}$,則bc的取值范圍(2,3].

分析 由正弦定理可得,$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$,結(jié)合已知可先表示b,c,然后由△ABC為銳角三角形及B+C=120°可求B的范圍,再把所求的bc用sinB,cosB表示,利用三角公式進行化簡后,結(jié)合正弦函數(shù)的性質(zhì)可求bc的范圍.

解答 解:由正弦定理可得,$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$,
∴b=2sinB,c=2sinC,
∵△ABC為銳角三角形,
∴0°<B<90°,0°<C<90°且B+C=120°,
∴30°<B<90°
∵bc=4sinBsin(120°-B)
=4sinB($\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB)
=2$\sqrt{3}$sinBcosB+2sin2B
=$\sqrt{3}$sin2B+(1-cos2B)
=2sin(2B-30°)+1,
∵30°<B<90°,
∴30°<2B-30°<150°,
∴$\frac{1}{2}$<sin(2B-30°)≤1,
∴2<2sin(2B-30°)+1≤4,
即2<bc≤3,
故答案為:(2,3].

點評 本題綜合考查了正弦定理和面積公式及兩角和與差的正弦、余弦公式及輔助角公式的綜合應用,解題的關鍵是熟練掌握基本公式并能靈活應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.定義max{m,n}=$\left\{\begin{array}{l}{m,m≥n}\\{n,n>m}\end{array}\right.$,則max{$\frac{^{2}+1}{a}$,$\frac{{a}^{2}+1}$}(a>0,b>0)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在三棱錐A-BCD中,CA=CD,BA=BD,點E是邊AD上的一點,當AD=2AE時,AD⊥平面BCE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.求下列函數(shù)的導數(shù).
(1)y=(x+1)2-1gx;
(2)y=$\frac{cos2x}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(α>b>0)的右焦點到直線x-y+3$\sqrt{2}$=0的距離為5,且橢圓的一個長軸端點與一個短軸端點間的距離為$\sqrt{10}$.
(1)求橢圓C的方程;
(2)在x軸上是否存在點Q,使得過Q的直線與橢圓C交于A、B兩點,且滿足$\frac{1}{Q{A}^{2}}$+$\frac{1}{Q{B}^{2}}$為定值?若存在,請求出定值,并求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.由定積分的性質(zhì)和幾何意義,求${∫}_{0}^{1}$($\sqrt{1{-(x-1)}^{2}}$+1)dx=$\frac{π}{4}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知M=$\frac{{C}_{2015}^{0}}{1}$-$\frac{{C}_{2015}^{1}}{2}$+$\frac{{C}_{2013}^{2}}{3}$-$\frac{{C}_{2015}^{3}}{4}$+…+$\frac{{C}_{2015}^{2014}}{2015}$-$\frac{{C}_{2015}^{2015}}{2016}$,則M的值為$\frac{1}{2016}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=(λ+1)Sn+1(n∈N*,λ≠-2),且3a1,4a2,a3+13成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足anbn=log4an+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知△ABC為等邊三角形,點M在△ABC外,且MB=2MC=2,則MA的最大值是3.

查看答案和解析>>

同步練習冊答案