2.若將f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個單位,再將縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$,得g(x)的圖象,且g(x)圖象關(guān)于直線x=-$\frac{π}{12}$對稱,則f($\frac{π}{4}$)=(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個單位,可得y=2sin[2(x-$\frac{π}{6}$)+φ]
=2sin(2x-$\frac{π}{3}$+φ)的圖象;
再將縱坐標(biāo)不變,橫坐標(biāo)為原來的$\frac{1}{2}$,得g(x)=2sin(4x-$\frac{π}{3}$+φ)的圖象.
由g(x)圖象關(guān)于直線x=-$\frac{π}{12}$對稱,可得4(-$\frac{π}{12}$)-$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,
求得φ=kπ+$\frac{7π}{6}$,k∈Z,故φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$),
f($\frac{π}{4}$)=2sin($\frac{π}{2}$+$\frac{π}{6}$)=2cos$\frac{π}{6}$=$\sqrt{3}$,
故選:C.

點評 本題主要考查誘導(dǎo)公式,y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)滿足f(x+1)=x2-x+2,則f(-1)=( 。
A.8B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.1~100中所有奇數(shù)的和為( 。
A.99B.1250C.2500D.2525

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知冪函數(shù)f(x)=(t3-t+1)${x}^{\frac{7+3t-2{t}^{2}}{5}}$是偶函數(shù),且在(0,+∞)上為增函數(shù),則t的值為1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=ln(x2-2x-3)的定義域為( 。
A.(-1,3)B.(-∞,-1)∪(3,+∞)C.[-3,1]D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.橢圓$\frac{x^2}{5}+\frac{y^2}{3}=1$的離心率是( 。
A.$\frac{2}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{2}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,右焦點為(2$\sqrt{2}$,0),過點P(-2,1)斜率為1的直線l與橢圓C交于A,B兩點.
(1)求橢圓C的方程;
(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“x-3=0”是“(x-3)(x+4)=0”的(  )條件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點M(1,0),直線l:x-2y-2=0;則過點M且與直線l平行的直線方程為x-2y-1=0;以M為圓心且被l截得的弦長為$\frac{4}{5}\sqrt{5}$的圓的方程是$(x-1)^{2}+{y}^{2}=\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案