分析 把已知數(shù)列遞推式變形,然后利用累加法求得數(shù)列通項公式,結(jié)合{$\frac{{a}_{n}+t}{{3}^{n}}$}是公差為1的等差數(shù)列列式求得t值.
解答 解:由an=3an-1+3n-1,得$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{n-1}}{{3}^{n-1}}+1-\frac{1}{{3}^{n}}$,
即$\frac{{a}_{n}}{{3}^{n}}-\frac{{a}_{n-1}}{{3}^{n-1}}=1-\frac{1}{{3}^{n}}$(n≥2),
∴$\frac{{a}_{2}}{{3}^{2}}-\frac{{a}_{1}}{3}=1-\frac{1}{{3}^{2}}$,
$\frac{{a}_{3}}{{3}^{3}}-\frac{{a}_{2}}{{3}^{2}}=1-\frac{1}{{3}^{3}}$,
…
$\frac{{a}_{n}}{{3}^{n}}-\frac{{a}_{n-1}}{{3}^{n-1}}=1-\frac{1}{{3}^{n}}$(n≥2),
累加得:$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{1}}{3}+(n-1)-\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$=$\frac{5}{3}+n-1-\frac{1}{6}+\frac{1}{2•{3}^{n}}$=$\frac{1}{2}+n+\frac{1}{2•{3}^{n}}$,
∴${a}_{n}=\frac{2n+1}{2}•{3}^{n}+\frac{1}{2}$(n≥2).
驗證n=1時上式成立,
∴${a}_{n}=\frac{2n+1}{2}•{3}^{n}+\frac{1}{2}$.
由{$\frac{{a}_{n}+t}{{3}^{n}}$}是公差為1的等差數(shù)列,得:
$\frac{{a}_{2}+t}{9}-\frac{{a}_{1}+t}{3}=\frac{23+t}{9}-\frac{5+t}{3}=1$,解得:$t=-\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.
點評 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓練了累加法求數(shù)列的通項公式,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | -$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com