A. | $\frac{2012}{2011}$ | B. | $\frac{2010}{2011}$ | C. | $\frac{2013}{2012}$ | D. | $\frac{2011}{2012}$ |
分析 由條件利用函數(shù)在某一點(diǎn)的導(dǎo)數(shù)的幾何意義求得b的值,根據(jù)f(n)的解析式,用裂項(xiàng)法求得數(shù)列{$\frac{1}{f(n)}$}的前n項(xiàng)和為Sn的值,可得S2011的值.
解答 解:由題意可得A(0,0),函數(shù)f(x)=x2+2bx的圖象在點(diǎn)A(0,0)處的切線l的斜率為0+2b=2b,
再根據(jù)l與直線x+y+3=0垂直,可得2b•(-1)=1,∴b=-$\frac{1}{2}$.
∵f(n)=n2+2bn=n2-n=n(n-1),∴$\frac{1}{f(n)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
故數(shù)列{$\frac{1}{f(n)}$}的前n項(xiàng)和為Sn =0+(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n-1}-\frac{1}{n}$)=1-$\frac{1}{n}$,
∴S2011=1-$\frac{1}{2011}$=$\frac{2010}{2011}$,
故選:B.
點(diǎn)評(píng) 本題主要考查函數(shù)在某一點(diǎn)的導(dǎo)數(shù)的幾何意義,用裂項(xiàng)法進(jìn)行數(shù)列求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(-2,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,+∞) | C. | (-2,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞) | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-1,\frac{{\sqrt{3}}}{2}]$ | B. | [-1,1] | C. | $[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$ | D. | $[-\frac{{\sqrt{3}}}{2},1]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0則x2+y2≠0”. | |
B. | 若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則?p:?x∈R,x2-x+1>0. | |
C. | △ABC中,sinA>sinB是A>B的充要條件. | |
D. | ?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù). |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com