15.函數(shù)y=sin2x+cos2x在[0,π]上的單調(diào)遞減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].

分析 由條件利用兩角和差的正弦公式化簡函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性求得函數(shù)在在[0,π]上的單調(diào)遞減區(qū)間.

解答 解:函數(shù)y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,
求得 kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,k∈Z,可得函數(shù)的減區(qū)間為[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.
結(jié)合x∈[0,π],可得函數(shù)的減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$],
故答案為:$[\frac{π}{8},\frac{5π}{8}]$.

點評 本題主要考查兩角和差的正弦公式,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0;
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上單調(diào)遞增,求ω的取值范圍;
(2)令ω=4,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有20個零點,在所有滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.sin182°cos28°-cos2°sin28°的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=sin(x+\frac{π}{6})cos(x+\frac{π}{6})$,給出下列結(jié)論:
①f(x)的最小正周期為π
②f(x)的一條對稱軸為x=$\frac{π}{6}$
③f(x)的一個對稱中心為$(\frac{π}{6},0)$
④$f(x-\frac{π}{6})$是奇函數(shù)
其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x2+2bx的圖象在點A(0,f(0))處的切線l與直線x+y+3=0垂直,若數(shù)列{$\frac{1}{f(n)}$}的前n項和為Sn,則S2011的值為( 。
A.$\frac{2012}{2011}$B.$\frac{2010}{2011}$C.$\frac{2013}{2012}$D.$\frac{2011}{2012}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$\root{6}{(a-b)^{6}}$(a<b)=b-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)命題p:存在x0∈(-2,+∞),使得6+x0=5.命題q:對任意x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4恒成立.
(1)寫出命題p的否定.
(2)判斷命題非p,p或q,p且q的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知{an}是首項為1的等比數(shù)列,且a4=8,則數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前5項和為( 。
A.31B.$\frac{31}{16}$C.11D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=lnx-|x-2|的零點的個數(shù)為2.

查看答案和解析>>

同步練習(xí)冊答案