15.已知某海港的貨運(yùn)碼頭只能停泊一艘貨輪,甲、乙兩艘貨輪都要在此碼頭?6小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),求這兩艘貨輪中有一艘貨輪停泊在此碼頭,另一艘貨輪等待的概率.

分析 設(shè)出甲、乙到達(dá)的時(shí)刻,列出所有基本事件的約束條件同時(shí)列出這兩艘船中至少有一艘在?坎次粫r(shí)必須等待約束條件,利用線性規(guī)劃作出平面區(qū)域,利用幾何概型概率公式求出概率.

解答 解:設(shè)甲到達(dá)的時(shí)刻為x,乙到達(dá)的時(shí)刻為y則所有的基本事件構(gòu)成的區(qū)域
Ω=$\left\{\begin{array}{l}{0≤x≤24}\\{0≤y≤24}\end{array}\right.$,其面積SΩ=242,如圖所示
這兩艘船中至少有一艘在?坎次粫r(shí)必須等待包含的基本事件構(gòu)成的區(qū)域
A=$\left\{\begin{array}{l}{0≤x≤24}\\{0≤y≤24}\\{|x-y|≤6}\end{array}\right.$,即圖中陰影部分,其面積為SA=242-182,
這兩艘船中至少有一艘在停靠泊位時(shí)必須等待的概率P(A)=$\frac{2{4}^{2}-1{8}^{2}}{2{4}^{2}}$=$\frac{7}{16}$.

點(diǎn)評(píng) 本題主要考查建模、解模能力;解答關(guān)鍵是利用線性規(guī)劃作出事件對(duì)應(yīng)的平面區(qū)域,再利用幾何概型概率公式求出事件的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}是各項(xiàng)正數(shù)首項(xiàng)1等差數(shù)列,Sn為其前n項(xiàng)和,若數(shù)列{$\sqrt{{S}_{n}}$}也為等差數(shù)列,則$\frac{{S}_{n}+8}{{a}_{n}+1}$的最小值是$\frac{17}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算下列各式的值:
(1)$\root{3}{(-8)^{3}}$•($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+8${\;}^{\frac{2}{3}}$•125${\;}^{\frac{1}{3}}$;
(2)log23•log34+(log53+log5$\frac{1}{3}$)+(log35-log315).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-ax+b(a,b∈R)
(Ⅰ)若函數(shù)f(x)在[0,1]上不單調(diào),求a的取值范圍
(Ⅱ)對(duì)任意x∈[-1,1],都存在y∈R,使得f(y)=f(x)+y成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題P:?x∈R,mx2+1<1;q:?x∈R,x2+mx+1≥0,若p∨(¬q)為假命題,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,0)∪(2,+∞)B.[0,2]C.[2,+∞)D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知拋物線C:y2=12x的焦點(diǎn)為F,準(zhǔn)線為l,P為l上一點(diǎn),Q是直線PF與拋物線的一個(gè)交點(diǎn),若2$\overrightarrow{FP}$+3$\overrightarrow{FQ}$=$\overrightarrow{0}$,則$\overrightarrow{|QF|}$=( 。
A.5B.$\frac{15}{2}$C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,則|$\overrightarrow{a}$-2$\overrightarrow$|=(  )
A.$2\sqrt{3}$B.0C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.以F(1,0)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是( 。
A.x=4y2B.y=4x2C.x2=4yD.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某校選修乒乓球課程的學(xué)生中,高一年級(jí)有30名,高二年級(jí)有40名,現(xiàn)從這70人中用分層抽樣的方法抽取一個(gè)容量為14的樣本,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為( 。
A.6B.8C.10D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案