分析 (1)由弦切角定理推導(dǎo)出△PAB~△PCA,由此能證明$\frac{AB}{AC}=\frac{PA}{PC}$.
(2)由切割線定理得PA2=PB•PC,由AE是∠BAC的角平分線,得△AEC~△ABD,由此能求出AD•AE的值.
解答 證明:(1)∵PA為圓O的切線,∴∠PAB=∠ACP,
又∠P為公共角,∴△PAB~△PCA,
∴$\frac{AB}{AC}=\frac{PA}{PC}$(4分)
解:(2)∵PA為圓O的切線,BC是過點(diǎn)O的割線,
∴PA2=PB•PC,∴PC=40,BC=30,
又∠CAB=90°,∴AC2+AB2=BC2=900,
又由(1)知$\frac{AB}{AC}=\frac{PA}{PC}=\frac{1}{2}$,∴$AC=12\sqrt{5}$,$AB=6\sqrt{5}$,
∵AE是∠BAC的角平分線,且∠AEC=∠ABD,∴△AEC~△ABD,
∴$\frac{AB}{AE}=\frac{AD}{AC}$,
∴$AD•AE=AB•AC=6\sqrt{5}×12\sqrt{5}=360$.(10分)
點(diǎn)評(píng) 本題考查兩組線段比值相等的證明,考查兩線段乘積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意弦切角定理和切割線定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {-1,3} | C. | {3,1,-1} | D. | {1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (0,e] | C. | (-∞,-1] | D. | (-∞,-e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com