14.已知$\left\{\begin{array}{l}x>\frac{1}{3}\\ y>1\end{array}$,若對(duì)滿足條件的任意實(shí)數(shù)x,y,不等式$\frac{{9{x^2}}}{{{a^2}(y-1)}}$+$\frac{y^2}{{{a^2}(3x-1)}}$≥1恒成立,則實(shí)數(shù)a的最大值是2$\sqrt{2}$.

分析 分離變量a2,構(gòu)造輔助函數(shù)t=$\frac{(3x-1)^{2}+2(3x-1)+1}{y-1}$+$\frac{(y-1)^{2}+2(y-1)+1}{3x-1}$,然后利用基本不等式求出t的最小值,從而得到a2的范圍,進(jìn)一步求得a的取值范圍,得到a的最大值.

解答 解:不等式$\frac{{9{x^2}}}{{{a^2}(y-1)}}$+$\frac{y^2}{{{a^2}(3x-1)}}$≥1恒成立,
∴a2≤$\frac{9{x}^{2}}{y-1}$+$\frac{{y}^{2}}{3x-1}$=$\frac{(3x-1)^{2}+2(3x-1)+1}{y-1}$+$\frac{(y-1)^{2}+2(y-1)+1}{3x-1}$,
令t=$\frac{(3x-1)^{2}+2(3x-1)+1}{y-1}$+$\frac{(y-1)^{2}+2(y-1)+1}{3x-1}$,
∵x$>\frac{1}{3}$,y>1,
∴y-1>0,3x-1>0,
∴t≥2$\sqrt{(3x-1+\frac{1}{3x-1}+2)•(y-1+\frac{1}{y-1}+2)}$≥2$\sqrt{(2+2)•(2+2)}$=8,
∴a2≤8,則-2$\sqrt{2}$≤a≤2$\sqrt{2}$,
∴實(shí)數(shù)a的最大值是2$\sqrt{2}$
故答案為:2$\sqrt{2}$

點(diǎn)評(píng) 本題考查了利用基本不等式求函數(shù)的最值,訓(xùn)練了函數(shù)構(gòu)造法,解答的關(guān)鍵是把構(gòu)造出的函數(shù)靈活變形,然后利用基本不等式求最值.是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)a=$\sqrt{\frac{1-cos50°}{2}}$,b=$\frac{2tan13°}{1-ta{n}^{2}13°}$,c=$\frac{1}{2}$cos4°-$\frac{\sqrt{3}}{2}$sin4°,則有(  )
A.a>b>cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在直四棱柱ABCD-A1B1C1D1中,AB∥CD,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0);
(1)求證:CD⊥平面ADD1A1
(2)現(xiàn)將與四棱柱ABCD-A1B1C1D1形狀和大小完全相同的兩個(gè)四棱柱拼接成一個(gè)新的四棱柱,規(guī)定:若拼接成的新的四棱柱形狀完全相同,則視為同一種拼接方案;問:共有幾種不同的方案?在這些拼接成的新四棱柱中,記其中最小的表面積為f(k),寫出f(k)的表達(dá)式(直接寫出答案,不必說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0x≤2}\\{(\frac{1}{2})^{x}+1,x>2}\end{array}\right.$,則關(guān)于x的方程f(x2+2x)=a的實(shí)數(shù)根個(gè)數(shù)不可能為( 。
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓O:x2+y2=4,兩個(gè)定點(diǎn)A(a,2),B(m,1),其中a∈R,m>0.P為圓O上任意一點(diǎn),且$\frac{PA}{PB}$=k(k為常數(shù)).
(1)求A,B的坐標(biāo)及常數(shù)k的值;
(2)過點(diǎn)E(a,t)作直線l與圓C:x2+y2=m交于M、N兩點(diǎn),若M點(diǎn)恰好是線段NE的中點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)F1(-1,0),F(xiàn)2(1,0)是橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),過點(diǎn)P(0,3)的直線l與橢圓交于A,B兩點(diǎn),且|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,sinA:sinB:sinC=2:3:4,則最小角的余弦值為(  )
A.$\frac{7}{8}$B.1C.$\frac{7}{9}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)12個(gè)相同的小球放入編號(hào)為1,2,3,4的盒子中,問每個(gè)盒子中至少有一個(gè)小球的不同放法有多少種?
(2)12個(gè)相同的小球放入編號(hào)為1,2,3,4的盒子中,要求每個(gè)盒子中的小球數(shù)不小于其編號(hào)數(shù),問不同的放法有多少種?
(3)12個(gè)相同的小球放入編號(hào)為1,2,3,4的盒子中,每盒可空,問不同的放法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,上頂點(diǎn)為M,且△MF1F2為面積是1的等腰直角三角形.
(1)求橢圓E的方程;
(2)若直線l:y=-x+m與橢圓E交于A,B兩點(diǎn),以AB為直徑的圓與y軸相切,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案