5.一個(gè)類似楊輝三角形的數(shù)陣:則第九行的第二個(gè)數(shù)為66.

分析 觀察首尾兩數(shù)都是1,3,5,7等為奇數(shù),可知第n行的首尾兩數(shù),設(shè)第n(n≥2)行的第2個(gè)數(shù)構(gòu)成數(shù)列{an},則有a3-a2=3,a4-a3=5,a5-a4=7,…,an-an-1=2n-3,相加得an,即可求出第九行的第二個(gè)數(shù).

解答 解:觀察首尾兩數(shù)都是1,3,5,7,可知第n行的首尾兩數(shù)均為2n-1
設(shè)第n(n≥2)行的第2個(gè)數(shù)構(gòu)成數(shù)列{an},則有a3-a2=3,a4-a3=5,a5-a4=7,…,an-an-1=2n-3,
相加得an-a2=3+5+…+(2n-3)=$\frac{3+2n-3}{2}$×(n-2)=n(n-2)
an=3+n(n-2)=n2-2n+3,
所以第九行的第二個(gè)數(shù)為81-18+3=66.
故答案為:66.

點(diǎn)評 本題主要考查了數(shù)列的應(yīng)用,以及利用疊加法求數(shù)列的通項(xiàng),同時(shí)考查了等差數(shù)列求和,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)的定義域是(-1,0),則函數(shù)f(sinx)的定義域是(2kπ-π,2kπ),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,菱形ABCD的邊長為6,∠BAD=60°,對角線AC,BD相交于點(diǎn)O,將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點(diǎn)M是棱BC的中點(diǎn),DM=3$\sqrt{2}$.求證:
(1)OM∥平面ABD;
(2)平面ABC⊥平面MDO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.經(jīng)過點(diǎn)(1,$\frac{1}{2}$),漸近線與圓(x-3)2+y2=1相切的雙曲線的標(biāo)準(zhǔn)方程為( 。
A.x2-8y2=1B.2x2-4y2=1C.8y2-x2=1D.4x2-2y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,且S1、S2、S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三棱錐S-ABC的三視圖如圖,若點(diǎn)S,A,B,C都在球O的球面上,則球O的表面積是(  )
A.B.C.12πD.15π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.一位測量愛好者在與金茂大廈頂部同一水平線上的B處測得金茂大廈頂部A的仰角為15.66°,再向金茂大廈前進(jìn)500米到C處,測得金茂大廈頂部A的仰角22.81°,他能算出金茂大廈的高度呢?若能算出,請計(jì)算其高度?(精確到1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(k+$\frac{4}{k}$)lnx+$\frac{4-{x}^{2}}{x}$,其中常數(shù)k>0.
(1)當(dāng)k=1時(shí),求f(x)在定義域上的單調(diào)區(qū)間;
(2)若k∈[4,+∞),曲線y=f(x)上總存在相異兩點(diǎn)M(x1,y1),N(x2,y2)使得曲線y=f(x)在M,N兩點(diǎn)的切線互相平行,求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.12名新戰(zhàn)士,每人有一個(gè)儲物箱,每個(gè)箱子有一把鑰匙,但是鑰匙上沒有標(biāo)記箱子號碼,班長要想把所有的箱子打開最多要試多少次?

查看答案和解析>>

同步練習(xí)冊答案