7.已知f(x)在(-∞,+∞)上是增函數(shù),若f(4)=0,則滿足x•f(x)≤0的x取值范圍是( 。
A.[0,4]B.(-∞,4]C.[-4,0)∪(0,4]D.[4,+∞)

分析 首先由函數(shù)的性質(zhì)判斷函數(shù)y=xf(x)在(0,+∞)上是增函數(shù),從而轉(zhuǎn)化為不等式,進而可解出x的取值范圍.

解答 解:∵f(x)在(-∞,+∞)上是增函數(shù),若f(4)=0,則滿足g(x)=x•f(x)可知,x=0時,g(x)=0,
x<0時,g(x)是減函數(shù),∴x>0時,x•f(x)≤0,f(4)=0,
∴x的取值范圍是:[0,4],
故選:A.

點評 本題主要考查不等式的解法,考查函數(shù)的對稱性,應(yīng)注意函數(shù)單調(diào)性的判斷.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+2$\sqrt{3}sinxcosx+3{cos^2}$x,x∈R.
(1)求函數(shù)f(x)的值域;
(2)y=f(x)的圖象可由y=sin2x的圖象經(jīng)過怎樣的變換得到?寫出你的變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線x-$\sqrt{3}$y-$\sqrt{3}$=0的傾斜角是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知E、F是圓內(nèi)接四邊形ABCD對邊AB、CD的中點,M是EF的中點,自E分別作BC、AD的垂線,垂足記為P、Q.求證:MP=MQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的通項公式為an=$\frac{n+2}{{2}^{n}n(n+1)}$,其前n項和為Sn,若存在實數(shù)M,滿足對任意的n∈N+,都有Sn<M恒成立,則M的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
(I)寫出2×2列聯(lián)表;判斷是否有90%的把握認為猜對歌曲名稱是否與年齡有關(guān);說明你的理由;(下面的臨界值表供參考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)現(xiàn)計劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并從這6名選手中抽取2名幸運選手,求2名幸運選手中至少有一人在20~30歲之間的概率.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知冪函數(shù)y=xα的圖象過點(8,2),則α=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的通項公式為an=(n+1)•2n,Sn為數(shù)列{an}的前n項和,若不等式(-1)nλ<$\frac{{S}_{n}}{{S}_{n+1}}$對?n∈N*恒成立,則實數(shù)λ的取值范圍為$(-\frac{1}{4},\frac{2}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,若(2cosA-$\sqrt{3}$)2+(2sinB-$\sqrt{3}$)2=0,則∠C的度數(shù)為$\frac{π}{2}$.

查看答案和解析>>

同步練習冊答案