17.已知函數(shù)f(x)=sin2x+2$\sqrt{3}sinxcosx+3{cos^2}$x,x∈R.
(1)求函數(shù)f(x)的值域;
(2)y=f(x)的圖象可由y=sin2x的圖象經(jīng)過怎樣的變換得到?寫出你的變換過程.

分析 (1)先根據(jù)同角三角函數(shù)的基本關(guān)系、根據(jù)二倍角公式和兩角和與差的正弦公式化簡為y=Asin(ωx+Φ)+b的形式,即可得到答案.
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:(1)∵f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x
=$\sqrt{3}$sin2x+cos2x+2
=2sin(2x+$\frac{π}{6}$)+2,
∴由sin(2x+$\frac{π}{6}$)∈[-1,1],可得:f(x)=2sin(2x+$\frac{π}{6}$)+2∈[0,4].
(2)由y=sin2x的圖象向左平移$\frac{π}{12}$個單位可得函數(shù)y=sin2(x+$\frac{π}{12}$)=sin(2x+$\frac{π}{6}$)的圖象,
再把所得圖象上點的縱坐標變?yōu)樵瓉淼?倍,可得函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)的圖象.
再把所得圖象沿著y軸向上平移2個單位,可得函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)+2的圖象.

點評 本題主要考查三角恒等變換,函數(shù)y=Asin(ωx+φ)的圖象和性質(zhì),函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在空間,下列命題中正確的是(  )
A.對邊相等的四邊形一定是平行四邊形
B.四邊相等的四邊形一定是菱形
C.四邊相等的四個角也相等的四邊形一定是正方形
D.兩條對角線互相平分的四邊形是平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足($\overrightarrow{a}$+2$\overrightarrow$)•(5$\overrightarrow{a}$-4$\overrightarrow$)=0,且|$\overrightarrow{a}$|=|$\overrightarrow$|=1,則$\overrightarrow{a}$與$\overrightarrow$的夾角θ為( 。
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若a=log23,b=log45,$c={2^{\frac{3}{2}}}$,則a,b,c滿足( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l過點A(-3,4)
(1)若l與直線y=-2x+5平行,求其一般式方程;
(2)若l與直線y=-2x+5垂直,求其一般式方程;
(3)若l與兩個坐標軸的截距之和等于12,求其一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過點(1,2),且傾斜角為60°的直線方程是( 。
A.y+2=$\sqrt{3}$(x+1)B.y-2=-$\sqrt{3}$(x-1)C.y-2=$\sqrt{3}$(x-1)D.y+2=-$\sqrt{3}$(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|-4≤x≤9},B={x|m+1<x<2m-1},若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)$f(x)={log_2}({{x^2}+a})$的值域為R,則實數(shù)a的取值范圍為{a|a≤0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)在(-∞,+∞)上是增函數(shù),若f(4)=0,則滿足x•f(x)≤0的x取值范圍是( 。
A.[0,4]B.(-∞,4]C.[-4,0)∪(0,4]D.[4,+∞)

查看答案和解析>>

同步練習冊答案