13.設(shè)方程x2-x-3=0的兩個(gè)根為α,β,求做一個(gè)方程,使得它的兩個(gè)根為α3,-β3

分析 由題意不妨設(shè)α>0,β<0,且α+β=1,αβ=-3,構(gòu)造方程(x-α3)(x+β3)=0,從而化簡即可.

解答 解:∵方程x2-x-3=0的根一正一負(fù),
∴不妨設(shè)α>0,β<0,且α+β=1,αβ=-3,
構(gòu)造方程(x-α3)(x+β3)=0,
即x2-(α33)x-α3β3=0,
α33=(α-β)(α22+αβ)
=$\sqrt{(α+β)^{2}-4αβ}$((α+β)2-αβ)
=4$\sqrt{13}$,
α3β3=-27;
故方程為x2-4$\sqrt{13}$x+27=0.

點(diǎn)評 本題考查了方程的根與系數(shù)的關(guān)系應(yīng)用及化簡運(yùn)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知焦點(diǎn)在y軸上的雙曲線$\frac{{x}^{2}}{m}$+y2=1,其準(zhǔn)線方程為y=±$\frac{\sqrt{5}}{5}$,則實(shí)數(shù)m的值是( 。
A.-4B.-$\frac{1}{4}$C.-4或-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)計(jì)一個(gè)用有理指數(shù)冪逼近無理指數(shù)冪5${\;}^{\sqrt{2}}$的算法,并估計(jì)5${\;}^{\sqrt{2}}$的近似值,畫出算法的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知4x2+y2=4,則$\frac{y}{x+2}$最大值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線x2-y2=-4的頂點(diǎn)坐標(biāo)是(  )
A.(0,1)B.(0,±2)C.(±1,0)D.(±2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=x(x+1)的圖象在點(diǎn)x=1處的切線方程為( 。
A.3x-y-1=0B.3x-y-5=0C.3x-y+5=0D.3x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$
(I)判斷f(x)在R上的單調(diào)性,并加以證明
(II)當(dāng)x∈[1,2]時(shí),f(ax-1)+f($\frac{1}{2}$)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-$\frac{1}{2}$x+c(a、c∈R),滿足f(1)=0,f(0)=$\frac{1}{4}$成立.
(1)求a、c的值;
(2)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義在R上的偶函數(shù)f(x)在(0,+∞)上單凋遞減.則f(3),f(-4),f(-π)的大小關(guān)系是f(3)<f(-π)<f(-4).

查看答案和解析>>

同步練習(xí)冊答案