分析 先求出函數(shù)定義域,然后對復合函數(shù)進行分解,再判定兩簡單函數(shù)的單調性,利用復合函數(shù)單調性的判定方法可得所求增區(qū)間
解答 解:由x2+2x-8≠0,得x≠2或x≠-4,
y=$\frac{1}{{x}^{2}+2x-8}$由y=$\frac{1}{u}$,u=x2+2x-8復合而成,
且y=$\frac{1}{u}$在每個象限內單調遞減,
u=x2+2x-8在(-∞,-4),(-4,-1)上遞減,在(-1,2),(2,+∞)上遞增,
∴函數(shù)y=$\frac{1}{{x}^{2}+2x-8}$的單調遞增區(qū)間是(-∞,-4),(-4,-1)
故答案為:(-∞,-4),(-4,-1)
點評 本題考查復合函數(shù)的單調性、冪函數(shù)、二次函數(shù)的單調性,屬中檔題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a=r,b=r | B. | |a|=|b|=r | C. | a=r | D. | b=r |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 9 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com