15.已知tan(α-$\frac{π}{4}$)=2,則$\frac{sin2α-co{s}^{2}α}{1+cos2α}$的值為$\frac{1}{2}$.

分析 利用二倍角公式,同角三角函數(shù)基本關(guān)系式,結(jié)合差角的正切公式,可得結(jié)論.

解答 解:∵tan(α-$\frac{π}{4}$)=$\frac{tanα-1}{1-tanα}$=2,解得:tanα=1,
∴$\frac{sin2α-co{s}^{2}α}{1+cos2α}$=$\frac{2sinαcosα-co{s}^{2}α}{2co{s}^{2}α}$=$\frac{2tanα-1}{2}$=$\frac{2×1-1}{2}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查二倍角公式,同角三角函數(shù)基本關(guān)系式,差角的正切公式的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={1,2,3},平面內(nèi)以(x,y)為坐標(biāo)的點(diǎn)集合B={(x,y)|x∈A,y∈A,x+y∈A},則B的子集個(gè)數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.圓(x-1)2+(y-2)2=1關(guān)于直線x-y-2=0對(duì)稱的圓的方程為( 。
A.(x-4)2+(y+1)2=1B.(x+4)2+(y+1)2=1C.(x+2)2+(y+4)2=1D.(x-2)2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.△ABC中,AB=3,AC=2BC,當(dāng)△ABC面積取最大值時(shí),C角的正弦值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知sin2$\frac{B+C}{2}$+cos2A=$\frac{1}{4}$.
(I)求A的值;
(Ⅱ)若a=$\sqrt{3}$,求bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知點(diǎn)A(1,0),B(-1,2),C(0,-2),求以A、B,C三點(diǎn)為頂點(diǎn)的平行四邊形的另一個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若log${\;}_{\sqrt{3}}$x=4,則x=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的通項(xiàng)為an=$\frac{1}{cosncos(n+1)}$(n∈N*),求其前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)化簡(jiǎn)$\frac{1}{{sin{{10}°}}}-\frac{{\sqrt{3}}}{{sin{{80}°}}}$;
(2)已知$-\frac{π}{2}<x<0$,$sinx+cosx=\frac{1}{5}$,求$\frac{{sin2x+2{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案