16.f(x)=cosx+sinx的最大值為$\sqrt{2}$.

分析 利用兩角和與差的正弦函數(shù),結合三角函數(shù)的最值求解即可.

解答 解:f(x)=cosx+sinx=$\sqrt{2}$sin(x+$\frac{π}{4}$)$≤\sqrt{2}$.
f(x)=cosx+sinx的最大值為$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查兩角和與差的三角函數(shù),三角函數(shù)的最值的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={(x,y)|y=x2},B={(x,y)|2x-y-1=0},則A∩B=( 。
A.x=1,y=1B.(1,1)C.{1,1}D.{(1,1)}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知M為拋物線y2=4x上一動點,F(xiàn)為這條拋物線的焦點,有一個定點A(3,2),則|MA|+|MF|的最小值=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知正方體ABCD-A1B1C1D1兩頂點的坐標為B(-1,2,-1),D1(3,-2,3),則此正方體的外接球的表面積等于48π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題P:?x∈R,3x2+1>0,則¬p為( 。
A.?x∈R,3x2+1≤0B.?x∈R,3x2+1≤0C.?x∈R,3x2+1<0D.?x∈R,3x2+1<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.兩個數(shù)4和9的等比中項是( 。
A.6B.±6C.$\frac{13}{2}$D.±$\frac{13}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知曲線${C_1}:y={x^2}$與${C_2}:{y^2}=x$在第一象限內的交點為P.
(1)求過點P且與曲線C1相切的直線方程l;
(2)求l與曲線C2所圍圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知定義在R的函數(shù)$f(x)={a^x}+\frac{1}{a^x}({a>1})$.
(1)判斷f(x)的奇偶性和單調性,并說明理由;
(2)解關于x的不等式:f(x-1)>f(2x+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.由一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)得到的回歸直線方程為$\widehat{y}$=$\widehat$ x+$\widehat{a}$,下列四個命題中正確的個數(shù)有(  )
(1)直線$\widehat{y}$=$\widehat$ x+$\widehat{a}$必經(jīng)過點($\overline{x}$,$\overline{y}$)
(2)直線$\widehat{y}$=$\widehat$ x+$\widehat{a}$至少經(jīng)過點(x1,y1),(x2,y2),…,(xn,yn)中的一個點
(3)直線$\widehat{y}$=$\widehat$ x+$\widehat{a}$,的斜率為$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$
(4)直線$\widehat{y}$=$\widehat$ x+$\widehat{a}$,和各點(x1,y1),(x2,y2),…,(xn,yn)的偏差$\sum_{i=1}^{n}$[yi-(bxi+a)]2是該坐標平面上所有直線與這些點的偏差中最小的.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案