8.如圖是-個幾何體的三視圖,在該幾何體的各個面中,面積最小的面的面積為( 。
A.4B.8C.4$\sqrt{3}$D.4$\sqrt{2}$

分析 由三視圖可知:該幾何體的直觀圖如圖所示,面積最小的為側(cè)面VAB.

解答 解:視圖可知:該幾何體的直觀圖如圖所示,
由三BA⊥平面VAD,可得BA⊥VA.
面積最小的為側(cè)面Rt△VAB,
VA=$\sqrt{V{D}^{2}+D{A}^{2}}$=4$\sqrt{2}$,AB=2.
∴S△VAB=$\frac{1}{2}×2×4\sqrt{2}$=4$\sqrt{2}$.
故選:D.

點(diǎn)評 本題考查了三視圖的應(yīng)用、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{1}{2}{x^2}$-2lnx的單調(diào)遞減區(qū)間是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線$\frac{x^2}{3}$-y2=1的兩條漸近線的方程為$x±\sqrt{3}y=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(2-ax)在[0,3]上的增函數(shù),則a的取值范圍是(0,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=4Sn-1(n∈N*)則數(shù)列{an}的通項(xiàng)公式為an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$,若斜率為$\frac{4}{5}$的直線l過點(diǎn)(3,0)與C交于A、B兩點(diǎn),則所截線段AB的中點(diǎn)坐標(biāo)為($\frac{3}{2}$,-$\frac{6}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知直線l:x-y+3=0被圓(x-a)2+(y-2)2=4截得的弦長為2$\sqrt{3}$時(shí),實(shí)數(shù)a的值為-1±$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.圓$\left\{\begin{array}{l}x=-3+2cosθ\\ y=4+2sinθ\end{array}$與$\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}$的圓心距d與曲線$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的長度p的大小關(guān)系是( 。
A.d>pB.d<pC.d=pD.無法比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,A、B是離心率為$\frac{{\sqrt{3}}}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個頂點(diǎn),且AB=$\sqrt{5}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l平行于AB,與x,y軸分別交于點(diǎn)M,N,與橢圓相交于點(diǎn)C,D.證明:△OCM的面積等于△ODN的面積.

查看答案和解析>>

同步練習(xí)冊答案