分析 先求導(dǎo)函數(shù)f′(x),令f′(x)<0,求出函數(shù)f(x)的單調(diào)減區(qū)間,而f(x)的單調(diào)減區(qū)間為(0,4),它們是同一區(qū)間,建立等式關(guān)系,即可求出k的值.
解答 解:f′(x)=3kx2-6(k+1)x=0(k>0),
解得:x=0或$\frac{2k+2}{k}$而 $\frac{2k+2}{k}$>2,
令f′(x)=3kx2-6(k+1)x<0,解得x∈(0,$\frac{2k+2}{k}$),
∴f(x)的單調(diào)減區(qū)間為(0,$\frac{2k+2}{k}$),
根據(jù)題意可知(0,4)=(0,$\frac{2k+2}{k}$),
即$\frac{2k+2}{k}$=4,解得k=1,
所以k的值為1.
點評 本題主要考查導(dǎo)函數(shù)的正負與原函數(shù)的單調(diào)性之間的關(guān)系,即當導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,同時考查了分析與解決問題的綜合能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,1) | C. | (-2$\sqrt{13}$+8,1) | D. | ($\frac{1}{2}$,-2$\sqrt{13}$+8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5米/秒 | B. | 6米/秒 | C. | 7米/秒 | D. | 8米/秒 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com