12.若x∈(0,l)時,不等式$m≤\frac{1}{x}+\frac{1}{1-x}$恒成立,則實數(shù)m的最大值為4.

分析 要使不等式$\frac{1}{x}$+$\frac{1}{1-x}$≥m在(0,1)上恒成立,只需$\frac{1}{x}$+$\frac{1}{1-x}$的最小值大于等于m即可,然后利用基本不等式求出$\frac{1}{x}$+$\frac{1}{1-x}$的最值,即可求出m的取值范圍,求出即可.

解答 解:∵x∈(0,1),
∴1-x∈(0,1),
∵x+(1-x)=1,
∴$\frac{1}{x}$+$\frac{1}{1-x}$=($\frac{1}{x}$+$\frac{1}{1-x}$)[x+(1-x)]=2+$\frac{1-x}{x}$+$\frac{x}{1-x}$≥2+2 $\sqrt{\frac{1-x}{x}•\frac{x}{1-x}}$=4,
當且僅當 $\frac{1-x}{x}$=$\frac{x}{1-x}$,即x=$\frac{\sqrt{2}}{2}$時取等號,
∴m≤4,即實數(shù)m的最大值為4.
故答案為:4.

點評 本題主要考查了基本不等式求最值,以及恒成立問題,同時考查了轉(zhuǎn)化的思想和運算求解的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等比數(shù)列{an}的公比q=2,前n項和為Sn,則$\frac{S_3}{a_3}$的值為(  )
A.$\frac{15}{4}$B.$\frac{15}{2}$C.$\frac{7}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=2px(p>0),過其點F的直線l交拋物線C于點A,B,若|AF|:|BF|=3:1,則直線l的斜率等于( 。
A.±$\frac{\sqrt{3}}{3}$B.±1C.±$\sqrt{2}$D.±$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列四種函數(shù)中,表示同一函數(shù)的是( 。
A.y=x-1與$y=\sqrt{{{(x-1)}^2}}$B.y=x2與$y={(\sqrt{x})^4}$C.y=4lgx與y=2lgx2D.y=x2與$y=\root{3}{x^6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f定義如表,一列數(shù)x0,x1,x2,x3…滿足x0=5,且對任意自然數(shù)均有xn+1=f(xn),則x2015的值為( 。
x12345
f(x)41352
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|x2-3x+2=0},B={x|2x2-ax+2=0},若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}的前n項和為Sn,若S2=16,且a1,a2-4,a3-8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)bn=$\frac{{S}_{n}}{2n}$($\frac{{a}_{n}-2}{2n}$)n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC⊥AB,AA1=4,AB=AC=2$\sqrt{2}$,則此三棱柱ABC-A1B1C1的外接球表面積為32π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右焦點F2的直線y=$\sqrt{3}$(x-c)與雙曲線在第一象限交于點A,點F1為左焦點,且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,則此雙曲線的離心率為( 。
A.$\frac{1+\sqrt{3}}{2}$B.$\frac{1+\sqrt{5}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

查看答案和解析>>

同步練習冊答案