1.在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC⊥AB,AA1=4,AB=AC=2$\sqrt{2}$,則此三棱柱ABC-A1B1C1的外接球表面積為32π.

分析 由于直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,我們可以把直三棱柱ABC-A1B1C1補(bǔ)成正四棱柱,則正四棱柱的體對(duì)角線是其外接球的直徑,求出外接球的直徑后,代入外接球的表面積公式,即可求出該三棱柱的外接球的表面積.

解答 解:由于直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,
把直三棱柱ABC-A1B1C1補(bǔ)成正四棱柱,
則正四棱柱的體對(duì)角線是其外接球的直徑,
所以外接球半徑為$\frac{1}{2}\sqrt{8+8+16}$=2$\sqrt{2}$,
表面積為4π•8=32π.
故答案為:32π.

點(diǎn)評(píng) 在求一個(gè)幾何體的外接球表面積(或體積)時(shí),關(guān)鍵是求出外接球的半徑,我們通常有如下辦法:①構(gòu)造三角形,解三角形求出R;②找出幾何體上到各頂點(diǎn)距離相等的點(diǎn),即球心,進(jìn)而求出R;③將幾何體補(bǔ)成一個(gè)長(zhǎng)方體,其對(duì)角線即為球的直徑,進(jìn)而求出R.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若以點(diǎn)F為圓心,半徑為a的圓與雙曲線C的漸近線相切,則雙曲線C的離心率等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若x∈(0,l)時(shí),不等式$m≤\frac{1}{x}+\frac{1}{1-x}$恒成立,則實(shí)數(shù)m的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,在區(qū)間(0,1]上是增函數(shù)且最大值為-1的為( 。
A.y=-x2B.$y={(\frac{1}{2})^x}$C.$y=-\frac{1}{x}$D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中內(nèi)角A、B、C所對(duì)邊分別是a、b、c,若a=-ccos(A+C),則△ABC的形狀一定是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知lgx+lgy+lgz=0,求證:$\frac{1}{{x}^{2}(y+z)}$+$\frac{1}{{y}^{2}(x+z)}$+$\frac{1}{{z}^{2}(x+y)}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若不等式f(x)=x2+ax-2>0在區(qū)間[1,5]上有解,且f(5)>0,則a的取值范圍是( 。
A.(-$\frac{23}{5}$,+∞)B.[-$\frac{23}{5}$,1]C.(1,+∞)D.(-∞,-$\frac{23}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖是函數(shù)f(x)=Acos(ωx+φ)的一段圖象,則函數(shù)f(x)圖象上的最高點(diǎn)坐標(biāo)為( 。
A.($\frac{kπ}{2}$,2),k∈ZB.(kπ,2),k∈ZC.(2kπ-$\frac{π}{6}$,2),k∈ZD.(kπ-$\frac{π}{12}$,2),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.用數(shù)字0、1、2、3、4可以組成多少個(gè)無(wú)重復(fù)數(shù)字的四位數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案