20.如圖,A,B,C,D都在同一個與水平垂直的平面內(nèi),B,D為兩島上的兩座燈塔的塔頂,測量船于水面A處測得B點(diǎn)和D點(diǎn)的仰角分別為75°,30°,于水面C處測得B點(diǎn)和D點(diǎn)的仰角均為60°.
(Ⅰ)試探究圖中B,D間距離與另外哪兩點(diǎn)距離相等;
(Ⅱ)已知AC=1km,求B,D間的距離.

分析 在△ACD中,∠DAC=30°推斷出CD=AC,同時根據(jù)CB是△CAD底邊AD的中垂線,判斷出BD=BA,進(jìn)而在△ABC中利用余弦定理求得AB答案可得.

解答 解:(1):在△ACD中,∠DAC=30°,∴∠ADC=60°-∠DAC=30°,∴CD=AC,
又∠BCD=180-60°-60°=60°,∴CB是△CAD底邊AD的中垂線,∴BD=BA.
(2)∠ABC=75°-60°=15°,在△ABC中,由正弦定理得$\frac{AB}{sin60°}=\frac{AC}{sin15°}$,
∴AB=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.
∴BD=AB=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

點(diǎn)評 本題主要考查了解三角形的實(shí)際應(yīng)用.考查學(xué)生分析問題解決問題的能力.綜合運(yùn)用基礎(chǔ)知識的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a<b,c≥d,m=a-c,n=b-d,則m<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.四邊形OABC是上底為2,下底為6,底角為45°的等腰梯形,由斜二測法,畫出這個梯形的直觀圖O1A1B1C1,在直觀圖中梯形的高為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}$,且$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,則$\overrightarrow{AB}$=(  )
A.$\frac{1}{2}(\overrightarrow a-\overrightarrow b)$B.$\frac{1}{2}(\overrightarrow a+\overrightarrow b)$C.$\frac{1}{2}(\overrightarrow b-\overrightarrow a)$D.$\frac{1}{2}\overrightarrow a-\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2${\;}^{{{({a-x})}^k}}}$(a∈R),且f(1)>f(3),f(2)>f(3)( 。
A.若k=1,則|a-1|<|a-2|B.若k=1,則|a-1|>|a-2|C.若k=2,則|a-1|<|a-2|D.若k=2,則|a-1|>|a-2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)已知一次函數(shù)f(x)滿足f[f(x)]=4x+3,求f(x);
(2)已知函數(shù)f(x)滿足3f(x)+2f(-x)=2x+5,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.寫出命題:“若x2-3x+2≠0,則x≠1且x≠2”的逆否命題“若x=1或x=2,則x2-3x+2=0”..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列說法中
①命題“每個指數(shù)函數(shù)都是單調(diào)函數(shù)”是全稱命題,而且是真命題;
②若m?α,n?α,m,n是異面直線,那么n與α相交;
③設(shè)定點(diǎn)F1(0,-3),F(xiàn)2(0,3),動點(diǎn)P(x,y)滿足條件|PF1|+|PF2|=2a(a>0),則動點(diǎn)P的軌跡是橢圓;
④若實(shí)數(shù)k滿足0<k<9,則曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1與曲線$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1有相同的焦點(diǎn).
其中正確的為①④.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在極坐標(biāo)系中,設(shè)圓C:ρ=4cosθ與直線l:θ=$\frac{π}{4}$(ρ∈R)交于A,B兩點(diǎn),求以AB為直徑的圓的極坐標(biāo)方程為( 。
A.ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$)B.ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$)C.ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$)D.ρ=-2$\sqrt{2}$cos(θ-$\frac{π}{4}$)

查看答案和解析>>

同步練習(xí)冊答案