16.一個擺球在不計空氣阻力的情況下,擺球擺動的角度θ(-$\frac{π}{2}$<θ<$\frac{π}{2}$)與時間t的函數(shù)滿足:θ=3sint.
(1)t=0時,角θ是多少?
(2)擺球擺動的周期是多少?
(3)擺球完成5次完整擺動共需多少時間?

分析 (1)t=0時,θ=3sint=0
(2)利用周期公式,求出擺球擺動的周期;
(3)求出周期,可得完成一次完整的擺動需時2π,即可求出單擺完成5次完整擺動時間.

解答 解:(1)t=0時,θ=3sint=0;
(2)擺球擺動的周期是T=2π;
(3)因為T=2π,即完成一次完整的擺動需時2π,
所以單擺完成5次完整擺動需要時間t=5T=10π.

點評 本題考查三角函數(shù)的周期性,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)若x∈[0,2π].求函數(shù)y=$\sqrt{\frac{\sqrt{3}}{2}-sinx}$的定義域;
(2)求函數(shù)y=$\sqrt{2-|x-4|}$+lg(-sinx)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x2-ax+b,a,b∈R.
(1)當(dāng)a=2時,記函數(shù)|f(x)|在[0,4]上的最大值為g(b),求g(b)的最小值;
(2)存在實數(shù)a,使得當(dāng)x∈[0,b]時,2≤f(x)≤6恒成立,求b的最大值及此時a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a1=1,${a_{n+1}}=2{a_n}+1(n∈{N^*})$,則數(shù)列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$的各項和為2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)記函數(shù)φ(x)=ax2-2x+1+ln(x+1)的圖象為C,l為曲線C在點P(0,1)的切線,若存在a≥$\frac{1}{2}$,使直線l與曲線C有且僅有一個公共點,求滿足條件的所有a的值;
(2)判斷xsinx=1(x∈(0,5))實根的個數(shù);
(3)完成填空
用方程表述用函數(shù)零點表述
若函數(shù)y=f(x)和y=g(x)的圖象在(a,b)內(nèi)有交點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,點E在直角三角形ABC的斜邊AB上,四邊形CDEF為正方形,已知正方形CDEF的面積等于36.設(shè)∠CAB=θ,直角三角形ABC的周長L=12+$\frac{a(b+sinθ+cosθ)}{sinθcosθ}$.
(Ⅰ)求a,b的值;
(Ⅱ)求L的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=ex-2x-2的零點個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合$M=\{x|y={log_2}(-{x^2}+x+6)\}$,N={y|y=x2+1,x∈R},則集合M∩N=( 。
A.(-2,+∞)B.(-2,3)C.[1,3)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個圓錐的底面半徑為2cm,高為6cm,在其中有一個高為3cm的內(nèi)接圓柱,則圓柱的側(cè)面積為( 。
A.2πcm2B.4πcm2C.6πcm2D.12πcm2

查看答案和解析>>

同步練習(xí)冊答案