10.已知函數(shù)f(x)=1-$\sqrt{1-2x}$,g(x)=lnx,對于任意m≤$\frac{1}{2}$,都存在n∈(0,+∞),使得f(m)=g(n),則n-m的最小值為1.

分析 由題意可得1-$\sqrt{1-2m}$=lnn;從而可得n=${e}^{1-\sqrt{1-2m}}$;令1-$\sqrt{1-2m}$=t,t<1;則m=t-$\frac{{t}^{2}}{2}$,從而得到y(tǒng)=n-m=et-t+$\frac{{t}^{2}}{2}$;求導(dǎo)求函數(shù)的最小值即可.

解答 解:由m≤$\frac{1}{2}$知,
1-$\sqrt{1-2m}$≤1;
由f(m)=g(n)可化為
1-$\sqrt{1-2m}$=lnn;
故n=${e}^{1-\sqrt{1-2m}}$;
令1-$\sqrt{1-2m}$=t,t≤1;
則m=t-$\frac{{t}^{2}}{2}$,
則y=n-m=et-t+$\frac{{t}^{2}}{2}$;
故y′=et+t-1在(-∞,1]上是增函數(shù),
且y′=0時,t=0;
故y=n-m=et-t+$\frac{{t}^{2}}{2}$在t=0時有最小值,
故n-m的最小值為1;
故答案為:1.

點評 本題考查了函數(shù)恒成立問題,利用導(dǎo)數(shù)法以及換元法轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)y=sin(ωx-$\frac{π}{4}$)的周期為T,且2<T<4,ω為正整數(shù).
(1)求ω的值;
(2)設(shè)ω1是ω的最小值,用“五點法”作出函數(shù)y=sin(ω1x-$\frac{π}{4}$)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2+ex-$\frac{1}{2}$(x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是(-∞,$\sqrt{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.對任意實數(shù),若f(x+m)=$\frac{1-f(x)}{1+f(x)}$(m>0)成立,
①證明f(x)是以2m為周期的函數(shù);
②若f(x)在(-m,m]上的解析式是f(x)=x2,寫出f(x)在區(qū)間(m,3m]及R上的解析式(不必寫過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{8}$=1的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對于函數(shù)f(x)=x2+x+1作x=h(t)的代換,則不改變函數(shù)f(x)的值域的代換是x=t-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{(x+1)(x+a)}{x^2}$為偶函數(shù)
(1)求實數(shù)a的值;
(2)當(dāng)$x∈[\frac{1}{m},\frac{1}{n}](m>0,n>0)$時,若函數(shù)f(x)的值域為[2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\overrightarrow{p}$=(a,b),$\overrightarrow{q}$=(c,d),規(guī)定向量$\overrightarrow{p}$,$\overrightarrow{q}$之間的一個運(yùn)算符號“*”,$\overrightarrow{p}$*$\overrightarrow{q}$=(ac-bd,ad+bc),若$\overrightarrow{p}$=(0,1),$\overrightarrow{p}$*$\overrightarrow{q}$=(-4,-3),則$\overrightarrow{q}$等于( 。
A.(3,-4)B.(3,4)C.(-3,4)D.(-3,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若過圓(x-2)2+y2=9外一點M(1,7)引圓的切線,則此切線長為$\sqrt{41}$.

查看答案和解析>>

同步練習(xí)冊答案