9.若復(fù)數(shù)z1=i3,z2=2+i,則z1z2=( 。
A.-1-2iB.-1+2iC.1+2iD.1-2i

分析 利用復(fù)代數(shù)形式運(yùn)算法則求解.

解答 解:∵z1=i3=-i,z2=2+i,
∴z1z2=-i(2+i)=-2i-i2=1-2i.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)乘除運(yùn)算,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意復(fù)代數(shù)形式運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知△ABC中,AB=1,AC=$\sqrt{2}$,$\overrightarrow{AD}$=3$\overrightarrow{DB}$,$\overrightarrow{AE}$=2$\overrightarrow{EC}$,且$\overrightarrow{CD}$•$\overrightarrow{BE}$=-$\frac{43}{12}$,則A等于( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知在等比數(shù)列{an}中,a1=1,a4=$\frac{\sqrt{3}}{9}$tan33θ(θ∈(-$\frac{π}{6}$,$\frac{π}{6}$)),若數(shù)列{an}的前2014和為0,則θ的值為-$\frac{π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\sqrt{9-{x}^{2}}$-lg(x+3)的定義域是(-3,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.等腰直角三角形ABC中,A=90°,AB=AC=2,D是斜邊BC上一點(diǎn),且BD=3DC,則$\overrightarrow{AD}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓O的方程為x2+y2=100.
(1)過(guò)點(diǎn)A(10,20)引圓O的切線,求切線的方程;
(2)由直線l:y=x+18上一點(diǎn)引圓O的切線,求切線長(zhǎng)的最小值;
(3)已知直線y=kx+3與圓O交于M,N兩點(diǎn),若|MN|≥6$\sqrt{11}$,求k的取值范圍;
(4)設(shè)圓O過(guò)點(diǎn)M(3,5)的最長(zhǎng)弦和最短弦分別為AC和BD,求四邊形ABCD的面積;
(5)設(shè)AC和BD為圓O的兩條相互垂直的弦,且垂足為M(3,5),求四邊形ABCD的面積的最大值;
(6)若圓O上有且只有4個(gè)點(diǎn)到直線l:x+y+λ=0的距離為1,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{log_3}x|,0<x≤3\\ \frac{1}{3}{x^2}-\frac{10}{3}x+8,x>3\end{array}\right.$,若f(a)=f(b)=f(c)=f(d),且0<a<b<c<d,則ab+c+d的值是( 。
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某校食堂使用大小、手感完全一樣的餐票,小明口袋里有一元餐票2張,兩元餐票2張,五元餐票1張,若他從口袋中隨意摸出2張,則其面值之和不少于四元的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x2-1的定義域?yàn)镈,值域?yàn)閧0,1},則這樣的集合D最多有9個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案