7.某校食堂使用大小、手感完全一樣的餐票,小明口袋里有一元餐票2張,兩元餐票2張,五元餐票1張,若他從口袋中隨意摸出2張,則其面值之和不少于四元的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

分析 他從口袋中隨意摸出2張,求出基本事件總數(shù),再求出其面值之和不少于四元包含的基本事件個數(shù),由此能求出其面值之和不少于四元的概率.

解答 解:小明口袋里有一元餐票2張,兩元餐票2張,五元餐票1張,
若他從口袋中隨意摸出2張,基本事件總數(shù)n=${C}_{5}^{2}$=10,
其面值之和不少于四元包含的基本事件個數(shù)m=${C}_{2}^{1}{C}_{1}^{1}+{C}_{2}^{1}{C}_{1}^{1}+{C}_{2}^{2}$=5,
∴其面值之和不少于四元的概率p=$\frac{m}{n}=\frac{5}{10}$=$\frac{1}{2}$.
故選:C.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,已知△ABC是邊長為2的正三角形,O是它的中心,過點(diǎn)O作BC平行的平面α,分別交AB,AC于點(diǎn)D,E,則四邊形BCED的面積是( 。
A.$\frac{5\sqrt{3}}{9}$B.$\frac{4\sqrt{3}}{9}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)z1=i3,z2=2+i,則z1z2=(  )
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米,某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程$y=kx-\frac{1}{20}(1+{k^2}){x^2}(k>0)$表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)當(dāng)k=2時,求炮的射程;
(2)求炮的最大射程;
(3)設(shè)在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時,炮彈可以其中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.以下四個命題中,其中真命題的個數(shù)為( 。
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②對于命題p:?x∈R,使得x2+x+1<0.則¬p:?x∈R,均有x2+x+1≥0;
③“x<0”是“l(fā)n(x+1)<0”的充分不必要條件;
④命題p:“x>3”是“x>5”的充分不必要條件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為評估設(shè)備M生產(chǎn)某種零件的性能,從設(shè)備M生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/mm5859616263646566676869707173合計
件數(shù)11356193318442121100
經(jīng)計算,樣本的平均值μ=65,標(biāo)準(zhǔn)差σ=2.2,以頻率值作為概率的估計值.
(Ⅰ)為證判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為X,并根據(jù)以下不等式進(jìn)行評判(P表示相就事件睥概率):①P(μ-σ<X≤μ+σ)≥0.6826,②P(μ-2σ<X≤μ+2σ)≥0.9544,③P(μ-3σ<X≤μ+3σ)≥0.9974,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;若僅滿足其中兩個,則等級為乙,若僅滿足其中一個,則等級為丙;若全部都不滿足,則等級為丁,試判定設(shè)備M的性能等級.
(Ⅱ)將直徑小于等于μ-2σ或直徑不大于μ+2σ的零件認(rèn)為是次品,從樣本所含次品中任取2件,則它們的直徑之差不超過1mm的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖(其中[x]表示不超過實(shí)數(shù)x的最大整數(shù)),則運(yùn)行后輸出的結(jié)果是( 。
A.31B.33C.35D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$g(x)=\frac{x}{{{x^2}+ax+b}}$是奇函數(shù),且滿足g(1)=g(4).
(1)求實(shí)數(shù)a,b的值;
(2)若$f(x)=\frac{1}{g(x)}(x≠0)$,當(dāng)x∈[2,+∞)時,函數(shù)f(x)的圖象上是否存在不同的兩點(diǎn),使過這兩點(diǎn)的直線平行于x軸;
(3)對于(2)中的f(x),是否存在實(shí)數(shù)k同時滿足以下兩個條件:①不等式$f(x)+\frac{k}{2}>0$對x∈[0,+∞)恒成立,②方程f(x)=k在x∈[-8,-1)上有解.若存在,求出實(shí)數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,a=2$\sqrt{3}$,c=2$\sqrt{2}$,A=60°,則C=(  )
A.30°B.45°C.45°或135°D.60°

查看答案和解析>>

同步練習(xí)冊答案