17.函數(shù)f(x)=$\sqrt{9-{x}^{2}}$-lg(x+3)的定義域是(-3,3].

分析 根據(jù)函數(shù)的解析式可得$\left\{\begin{array}{l}{9{-x}^{2}≥0}\\{x+3>0}\end{array}\right.$,由此求得x的范圍.

解答 解:由函數(shù)f(x)=$\sqrt{9-{x}^{2}}$-lg(x+3),可得$\left\{\begin{array}{l}{9{-x}^{2}≥0}\\{x+3>0}\end{array}\right.$,求得-3<x≤3,
故答案為:(-3,3].

點評 本題主要考查求函數(shù)的定義域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題?x∈R,cosx≤1的真假判斷及其否定是( 。
A.真,?x0∈R,cosx0>1B.真,?x∈R,cosx>1
C.假,?x0∈R,cosx0>1D.假,?x∈R,cosx>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,已知△ABC是邊長為2的正三角形,O是它的中心,過點O作BC平行的平面α,分別交AB,AC于點D,E,則四邊形BCED的面積是( 。
A.$\frac{5\sqrt{3}}{9}$B.$\frac{4\sqrt{3}}{9}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等差數(shù)列{an}中,a6=9,a3=3a2,則a1等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,則a1+a2+…+a9=(  )
A.1B.1024C.-1024D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)內(nèi)是單調(diào)減函數(shù)的是( 。
A.y=log0.5|x|B.y=${3}^{{x}^{2}}$C.y=-x2+xD.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)z1=i3,z2=2+i,則z1z2=( 。
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米,某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程$y=kx-\frac{1}{20}(1+{k^2}){x^2}(k>0)$表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標.
(1)當k=2時,求炮的射程;
(2)求炮的最大射程;
(3)設(shè)在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以其中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$g(x)=\frac{x}{{{x^2}+ax+b}}$是奇函數(shù),且滿足g(1)=g(4).
(1)求實數(shù)a,b的值;
(2)若$f(x)=\frac{1}{g(x)}(x≠0)$,當x∈[2,+∞)時,函數(shù)f(x)的圖象上是否存在不同的兩點,使過這兩點的直線平行于x軸;
(3)對于(2)中的f(x),是否存在實數(shù)k同時滿足以下兩個條件:①不等式$f(x)+\frac{k}{2}>0$對x∈[0,+∞)恒成立,②方程f(x)=k在x∈[-8,-1)上有解.若存在,求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案