分析 以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出BD1與面A1BD所成角的正弦值.
解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)AD=t,則D(0,0,0),A1(t,0,1),B(t,2,0),D1(0,0,1),
$\overrightarrow{D{A}_{1}}$=(t,0,1),$\overrightarrow{DB}$=(t,2,0),
設(shè)平面DA1B的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=tx+z=0}\\{\overrightarrow{n}•\overrightarrow{DB}=tx+2y=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,-t,-2t),
又平面ABD的法向量$\overrightarrow{m}$=(0,0,1),二面角A1-BD-A的大小為$\frac{π}{6}$,
∴|cos<$\overrightarrow{n},\overrightarrow{m}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2t}{1×\sqrt{4+5{t}^{2}}}$=cos$\frac{π}{6}$,解得t=2$\sqrt{3}$,或t=-2$\sqrt{3}$(舍),
∴B(2$\sqrt{3}$,2,0),$\overrightarrow{B{D}_{1}}$=(-2$\sqrt{3}$,-2,1),$\overrightarrow{n}$=(2,-2$\sqrt{3}$,-4$\sqrt{3}$),
設(shè)BD1與面A1BD所成角為θ,
sinθ=$\frac{|\overrightarrow{B{D}_{1}}•\overrightarrow{n}|}{|\overrightarrow{B{D}_{1}}|•|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{\sqrt{17}•\sqrt{64}}$=$\frac{\sqrt{51}}{34}$.
∴BD1與面A1BD所成角的正弦值為$\frac{\sqrt{51}}{34}$.
故答案為:$\frac{\sqrt{51}}{34}$.
點(diǎn)評(píng) 本題考查線面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tan 38° | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0} | B. | {-2,-$\frac{4}{5}$} | C. | {-1,-$\frac{4}{5}$} | D. | {-1,-$\frac{4}{5}$,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一條直線 | B. | 兩條直線 | C. | 圓 | D. | 橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com