15.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,3cosA-cos(B+C)=1,a=$\sqrt{15}$,B=$\frac{π}{4}$,則b等于( 。
A.$\sqrt{10}$B.3C.2$\sqrt{2}$D.$\sqrt{5}$

分析 由條件利用誘導(dǎo)公式,同角三角函數(shù)的基本關(guān)系求得cosA、sinA的值,利用正弦定理求得b的值.

解答 解:△ABC中,由3cosA-cos(B+C)=3cosA+cosA=4cosA=1,
可得cosA=$\frac{1}{4}$,∴sinA=$\sqrt{{1-cos}^{2}A}$=$\frac{\sqrt{15}}{4}$.
再根據(jù)a=$\sqrt{15}$,B=$\frac{π}{4}$,利用正弦定理可得$\frac{a}{sinA}$=$\frac{sinB}$,即$\frac{\sqrt{15}}{\frac{\sqrt{15}}{4}}$=$\frac{\frac{\sqrt{2}}{2}}$,
求得 b=2$\sqrt{2}$,
故選:C.

點評 本題主要考查誘導(dǎo)公式,同角三角函數(shù)的基本關(guān)系,正弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)sinx=2a+3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{-{2}^{x-1},x≥1}\end{array}\right.$,則f(f(log212))=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD,M為PD的中點,過A,B,M的平面記為α.
(1)平面α與四棱錐P-ABCD的面相交,交線圍成一個梯形,在圖中畫出這個梯形;(不必說明畫法及理由)
(2)求證:AB⊥平面PBC;
(3)若CD=1,求三棱錐M-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i是虛數(shù)單位,復(fù)數(shù)z=(a+i)(1-i),若z的實部與虛部相等,則實數(shù)a=( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量$\overrightarrow{m}$=(cosB,2cos2$\frac{C}{2}$-1),$\overrightarrow{n}$=(c,b-2a),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(Ⅰ)求角C的大;
(Ⅱ)若點D為邊AB上一點,且滿足$\overrightarrow{AD}$=$\overrightarrow{DB}$,|$\overrightarrow{CD}$|=$\sqrt{7}$,c=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.按順序輸入x,y,z的值,運行如圖的程序后,輸出的結(jié)果為8,則輸入的x,y,z的值可能是(  )
A.x=6,y=8,z=9B.x=8,y=7,z=9C.x=8,y=6,z=10D.x=8,y=6,z=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)實數(shù)x、y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,則z=|x-4y+1|的最大值和最小值之和是( 。
A.2B.3C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=cos2x+asinx在區(qū)間(0,nπ)內(nèi)恰有8個零點,則實數(shù)a的取值范圍與最小正整數(shù)n的值分別為( 。
A.(-1,1),2B.(-1,1),4C.[-1,1],2D.[-1,1],4

查看答案和解析>>

同步練習(xí)冊答案