分析 (1)取PC中點(diǎn)N,連結(jié)MN,AM,BN,則梯形MNBA即為要求的梯形;
(2)根據(jù)面面垂直的性質(zhì)即可得出AB⊥平面PBC;
(3)作△PBC的中線PE,則M到底面的距離為$\frac{1}{2}PE$,代入體積公式計(jì)算.
解答 解:(1)取PC中點(diǎn)N,連結(jié)MN,AM,BN,則梯形MNBA為要求的梯形
(2)∵∠ABC=90°,∴AB⊥BC.
∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB⊥BC,AB?平面ABCD,
∴AB⊥平面PBC.
(3)∵PB=PC=BC=2CD=2,∴△PBC是等邊三角形,
過(guò)P作PE⊥BC,則PE⊥平面ABCD,且PE=$\sqrt{P{B}^{2}-B{E}^{2}}=\sqrt{3}$.
∴M到平面ACD的距離h=$\frac{1}{2}PE=\frac{\sqrt{3}}{2}$.
∵S△ACD=$\frac{1}{2}×CD×BC$=1.
∴三棱錐M-ACD的體積V=$\frac{1}{3}{S}_{△ACD}•h$=$\frac{1}{3}×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{6}$.
點(diǎn)評(píng) 本題考查了平面的作法,面面垂直的性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 3 | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x≤-2} | B. | {x|-2<x≤2} | C. | {x|-2≤x≤3} | D. | {x|-2≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{-\sqrt{3}+2\sqrt{2}}{6}$ | B. | $\frac{\sqrt{3}+2\sqrt{2}}{6}$ | C. | $\frac{-\sqrt{3}±2\sqrt{2}}{6}$ | D. | $\frac{\sqrt{3}±2\sqrt{2}}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com