7.設(shè)x5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,那么a1+a2+…+a5=31.

分析 x5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,當(dāng)x=1時(shí),1=a0;當(dāng)x=2時(shí),25=a0+a1+a2+…+a5,即可得出.

解答 解:∵x5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,
∴當(dāng)x=1時(shí),1=a0;
當(dāng)x=2時(shí),25=a0+a1+a2+…+a5
那么a1+a2+…+a5=25-1=31.
故答案為:31.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.sin$\frac{2015π}{4}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知cos(α-30°)=$\frac{1}{2}$sinα,0°<α<180°.則α=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知P(-1,1),Q(2,4)是曲線y=x2上的兩點(diǎn).
(1)求過點(diǎn)P,Q的曲線y=x2的切線方程;
(2)求與直線PQ平行的曲線y=x2的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=(-x2+ax)e-x,若a=2時(shí),求以點(diǎn)P(0,0)為切點(diǎn)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x|x+a|+m|x-1|,0≤x≤2,其中a,m∈R.
(1)若a=0,m=1,求f(x)的單調(diào)區(qū)間;
(2)對(duì)于給定的實(shí)數(shù)a,若函數(shù)f(x)存在最大值1+a,求實(shí)數(shù)m的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,若a=9,b=10,c=12,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形
C.最大角為120°的鈍角三角形D.最大角小于120°的鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l過橢圓的左頂點(diǎn)A,且與橢圓相交于另一點(diǎn)B.
(i)若$|AB|=\frac{{4\sqrt{2}}}{5}$,求直線l的傾斜角;
(ii)若點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且$\overrightarrow{QA}•\overrightarrow{QB}=4$,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知某幾何體的三視圖如圖所示,(圖中每一格為1個(gè)長度單位)則該幾何體的全面積為4+4$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案