5.已知拋物線C的頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為$\frac{{3\sqrt{2}}}{2}$.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點(diǎn)P(x0,y0)為直線l上一定點(diǎn),過點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn),求直線AB的方程,并證明直線AB過定點(diǎn)Q.

分析 (Ⅰ)由已知得$\frac{|0-c-2|}{\sqrt{2}}$=$\frac{{3\sqrt{2}}}{2}$,由此能求出拋物線C的方程.
(Ⅱ)設(shè)P(x0,x0-2),設(shè)切點(diǎn)為(x,$\frac{{x}^{2}}{4}$),曲線C:y=$\frac{{x}^{2}}{4}$,y′=$\frac{x}{2}$,從而x2-2x0x+4x0-8=0,由此能求出直線AB為x0x-2y-2y0=0,并能證明直線AB過定點(diǎn)Q(2,2).

解答 解:(Ⅰ)∵拋物線C的焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為$\frac{{3\sqrt{2}}}{2}$,
∴$\frac{|0-c-2|}{\sqrt{2}}$=$\frac{{3\sqrt{2}}}{2}$,
解得c=1或c=-5,(舍),
∴拋物線C的方程為x2=4y.
(Ⅱ)設(shè)P(x0,x0-2),設(shè)切點(diǎn)為(x,$\frac{{x}^{2}}{4}$),曲線C:y=$\frac{{x}^{2}}{4}$,y′=$\frac{x}{2}$,
則切線的斜率為$\frac{\frac{{x}^{2}}{4}-({x}_{0}-2)}{x-{x}_{0}}$=y′=$\frac{x}{2}$,
化簡,得x2-2x0x+4x0-8=0,
設(shè)A(x1,$\frac{{{x}_{1}}^{2}}{4}$),B(x2,$\frac{{{x}_{2}}^{2}}{4}$),則x1,x2是以上方程的兩根,
∴x1+x2=2x0,x1x2=4x0-8,
kAB=$\frac{{x}_{1}+{x}_{2}}{4}$=$\frac{{x}_{0}}{2}$,
直線AB為:y-$\frac{{{x}_{1}}^{2}}{4}$=$\frac{{x}_{0}}{2}$(x-x1),
化簡,得:x0x-2y-2y0=0,定點(diǎn)Q(2,2).

點(diǎn)評 本題考查拋物線C的方程的求法,考查直線AB的方程的求法,考查直線AB過定點(diǎn)Q的證明,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若冪函數(shù)y=f(x)的圖象過點(diǎn)$({2,\frac{1}{4}})$,若實(shí)數(shù)m滿足$f(m)=\frac{1}{2}$,則實(shí)數(shù)m的值為$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=a-$\frac{1}{{{2^x}+1}}$,
(1)若a=1,求f(0)的值;
(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若函數(shù)f(x)為奇函數(shù),判斷|f(ax)|與f(2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-x-1
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若x∈(1,+∞)時(shí),總有f(x)≥m成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC的三內(nèi)角A,B,C 所對邊長分別為a,b,c,a2-b2=bc,AD為角A的平分線,且△ACD與△ABD面積之比為1:2.
(1)求角A的大;
(2)若 AD=$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=sin2x+1 的周期為(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(1,3),則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.各項(xiàng)均為正數(shù)的數(shù)列{an},a1=$\frac{1}{2}$,且an=$\frac{2{a}_{n-1}+1}{{a}_{n-1}+2}$(n≥2,n∈N*).
(1)證明:數(shù)列{$\frac{1-{a}_{n}}{1+{a}_{n}}$}為等比數(shù)列;
(2)若bn=n(3n+1)an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.a(chǎn)∈R,則“a=1”是“直線ax-y+2=0與直線x-ay-1=0平行”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案